Skip to main content
Log in

Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plane-strain compression testing was carried out above, around, and below the A r3 temperature with the deformation temperature, T def, varying between 1323 K and 973 K (1050 °C and 700 °C), using Gleeble 3500, to develop uniform distribution of ultra-fine ferrite (UFF) grains. Prior austenite (γ) grain structure, developed after soaking at 1473 K (1200 °C), was mixed in nature, comprising both coarse- and fine-γ-grain sizes. Applying heavy deformation in a single pass, just above the austenite-to-ferrite (α) transformation temperature (A r3), and cooling to room temperature resulted in the formation of UFF grain sizes (average α-grain size ~2 to 3 μm), with the largest grain sizes extending up to ~10 to 12 μm. Water quenching just after deformation prevented the coarsening of UFF grains and restricted the largest grain sizes to under 6 μm. Although the ferrite grain structures appeared homogeneous in slowly cooled samples (cooling rate (CR) 1 K/s), careful observation revealed the presence of alternate bands of coarse- (5 to 10 μm) and fine-α grains (<1 to 3 μm). The final α-grain size distributions were explained in view of the starting γ-grain size variation, dynamic recrystallization (DRX) of γ, dynamic strain-induced γ-to-α transformation (DSIT), and DRX of α and grain growth during slow cooling. Electron backscattered diffraction analysis (EBSD) revealed the presence of a large fraction (70 to 80 pct) of high-angle boundaries, having misorientation ≥15 deg. Compared to the use of the single, heavy deformation pass, the application of a number of lighter passes between A e3 and A r3 temperatures is more suitable in industrial rolling conditions, and also has the potential of developing UFF grains with high-angle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615.

  2. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  3. S.J. Wu and C.L. Davis: J. Microsc., 2004, vol. 213, pp. 262–72.

    Article  CAS  Google Scholar 

  4. D. Chakrabarti, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.

    Article  CAS  Google Scholar 

  5. J. Majta, J.G. Lenard, and M. Pietrzyk: ISIJ Int., 1996, vol. 36 (8), pp. 1094–1102.

    Article  CAS  Google Scholar 

  6. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  7. R. Priestner and P.D. Hodgson: Mater. Sci. Technol., 1992, vol. 8, pp. 849–54.

    CAS  Google Scholar 

  8. R. Priestner and E. de los Rios: Met. Technol., 1980, vol. 7, pp. 309–16.

    CAS  Google Scholar 

  9. R. Priestner, Y.M. Al-Horr, and A.K. Ibraheem: Mater. Sci. Technol., 2002, vol. 18, pp. 973–80.

    Article  CAS  Google Scholar 

  10. A.K. Ibraheem, R. Priestner, J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Ironmaking and Steelmaking, 2001, vol. 28 (2), pp. 203–08.

    Article  CAS  Google Scholar 

  11. R. Priestner and A.K. Ibraheem: Mater. Sci. Technol., 2000, vol. 16, pp. 1267–72.

    Article  CAS  Google Scholar 

  12. M.R. Hickson, R.K. Gibbs, and P.D. Hodgson: ISIJ Int., 1999, vol. 39, pp. 1176–80.

    Article  CAS  Google Scholar 

  13. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.

    Article  CAS  Google Scholar 

  14. J.H. Beynon, R.E. Gloss, and P.D. Hodgson: Mater. Forum, 1992, vol. 16, pp. 37–42.

    CAS  Google Scholar 

  15. P.J. Hurley and P.D. Hodgson: Mater. Sci. Eng. A, 2001, vol. 302, pp. 206–14.

    Article  Google Scholar 

  16. T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto: Proc. TMP 2004: 2nd Int. Conf. on Thermomechanical Processing of Steels, Stahleisen Verlag GmbH, Dusseldorf, Germany, 2004, pp. 415–22.

    Google Scholar 

  17. H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.

    Article  CAS  Google Scholar 

  18. K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–59.

    Article  CAS  Google Scholar 

  19. P.R. Rios, I. de S. Bott, D.B. Santos, T.M.F. de Melo, and J.L. Ferreira: Mater. Sci. Technol., 2007, vol. 23 (4), pp. 417–22.

    Article  CAS  Google Scholar 

  20. B. Eghbali and A. Abdollah-zadeh: Scripta Mater., 2006, vol. 54, pp. 1205–09.

    Article  CAS  Google Scholar 

  21. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 371, pp. 343–52.

    Article  Google Scholar 

  22. M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.

    Article  CAS  Google Scholar 

  23. B. Eghbali and A. Abdollah-Zadeh: Mater. Design, 2007, vol. 28, pp. 1021–26.

    Article  CAS  Google Scholar 

  24. C. Zhang, N. Xiao, L. Hao, D. Li, and Y. Li: Acta Mater., 2009, vol. 57, pp. 2956–68.

    Article  Google Scholar 

  25. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32 (2), pp. 189–209.

    Article  CAS  Google Scholar 

  26. A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367–76.

    Article  Google Scholar 

  27. G. Kugler and R. Turk: Acta Mater., 2004, vol. 52, pp. 4659–68.

    Article  CAS  Google Scholar 

  28. T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 1781–90.

    Article  CAS  Google Scholar 

  29. A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2607–17.

    CAS  Google Scholar 

  30. P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2985–93.

    Article  CAS  Google Scholar 

  31. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 8939–46.

    Article  Google Scholar 

  32. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

  33. J.-K. Choi, D.-H. Seo, J.-S. Lee, K.-K. Um, and W.-Y. Choo: ISIJ Int., 2003, vol. 43 (5), pp. 746–54.

    Article  CAS  Google Scholar 

  34. F. Siciliano, Jr., K. Minami, T.M. Maccagno, and J.J. Jonas: ISIJ Int., 1996, vol. 36, pp. 1500–06.

    Article  CAS  Google Scholar 

  35. Y. Misaka and T. Yoshimoto: J. Jpn. Soc. Technol. Plast., 1968, vol. 8, pp. 414–22.

    Google Scholar 

  36. J.D. Verhoeven: J. Mater. Eng. Perform., 2000, vol. 9, pp. 286–96.

    Article  CAS  Google Scholar 

  37. Y.D. Huang, W.Y Yang, and Z.Q. Sun: J. Mater. Process. Technol., 2003, vol. 134, pp. 19–25.

    Article  CAS  Google Scholar 

  38. M. Militzer and Y. Brechet: Metall. Mater. Eng. A, 2009, vol. 40A, pp. 2273–82.

    Article  CAS  Google Scholar 

  39. P.D. Hodgson and R.K. Gibbs: ISIJ Int., 1992, vol. 32, pp. 1329–38.

    Article  CAS  Google Scholar 

  40. Y.D. Huang and L. Froyen: J. Mater. Process. Technol., 2002, vol. 124, pp. 216–26.

    CAS  Google Scholar 

  41. S.Y. Ok and J.K. Park: Scripta Mater., 2005, vol. 52, pp. 1111–16.

    Article  CAS  Google Scholar 

  42. R.K. Ray, M.P. Butron-Guillen, J. Jonas, and G.E. Ruddle: ISIJ Int., 1992, vol. 32 (2), pp. 203–12.

    Article  Google Scholar 

  43. ASTM E384-99 Standard Test Method for Microindentation Hardness of Materials: Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2000, vol. 3.01, pp. 437–60.

Download references

Acknowledgments

Sincere thanks to the Department of Science and Technology (DST), New Delhi, and the Research and Development Division (R&D) of Tata Steel for the provision of research funding. RDCIS, SAIL, Ranchi deserves special mention not only for providing the research material, but also for offering the Gleeble testing facility. Finally, special thanks are due to the Head of the Metallurgical and Materials Engineering Department, Chairman and P.I. of the Steel Technology Centre (STC), and Head of the Central Research Facility (CRF) in I.I.T. Kharagpur, for the provision of research facilities, and all the staff members (Pradip Sarkar and Sukanta Mandal deserve special mention) associated with those departments, for the help and support they have extended during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chakrabarti.

Additional information

Manuscript submitted September 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, S., Roy, S., Kumar, V. et al. Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation. Metall Mater Trans A 42, 2575–2590 (2011). https://doi.org/10.1007/s11661-011-0668-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0668-1

Keywords

Navigation