Skip to main content
Log in

Effect of Duplex Aging on the Initiation and Propagation of Fatigue Cracks in the Solute-rich Metastable β Titanium Alloy Ti 38-644

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aging of highly β-stabilized titanium alloys commonly leads to the formation of precipitate-free zones being susceptible to fatigue crack initiation. Duplex aging improves the fatigue properties of metastable β titanium alloys by enhancing a homogeneous α phase formation. In this study a duplex-aging cycle was designed for Ti 38-644 (β-C). Depending on the prior processing history heat treatment parameters were adapted on the basis of microstructure studies, hardness measurements and comparative tensile tests. The fatigue limit and fatigue crack growth threshold were determined for duplex-aged β-C. The results indicate that duplex aging promotes a homogeneously precipitated α phase providing excellent values of the fatigue limit. Surface-related fatigue crack initiation was observed. Comparing the fracture surfaces of direct- and duplex-aged β-C a transition of the tensile fracture mode from intergranular to predominantly transgranular was observed accompanied by a gain in ductility at comparable yield strengths. This was assumed to be the reason for the slightly improved fatigue crack growth behavior of duplex-aged as compared to direct-aged β-C. Along the entire heat treatment cycle the microstructure response was evaluated with regard to the particular effects on the fatigue properties. The results indicate clearly that key to success is a completely recrystallized β microstructure and the reasonably controlled aging response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Schmidt and H.-J. Christ: Int. J. Mater. Res., 2008, vol. 99, pp. 1098–1106.

    CAS  Google Scholar 

  2. J.G. Ferrero, J.R. Wood, and P.A. Russo: in Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 211–26.

  3. H.-E. Krugmann and J.K. Gregory: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 549–61.

  4. L. Wagner and J.K. Gregory: Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 199–209.

  5. G. Lütjering and J.C. Williams: Titanium, Springer-Verlag, Berlin-Heidelberg, 2003, pp. 247–81.

    Google Scholar 

  6. http://www.allvac.com/pages/PDF/tech/TI-50938-644.pdf.

  7. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, pp. 797–827.

    Google Scholar 

  8. P. Schmidt, G.M. Lohse, and H.-J. Christ: in Ti-2007 Science and Technology, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals (JIM), Sendai, 2007, pp. 769–72.

  9. P. Schmidt and H.-J. Christ: Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, and R. Jones, eds., ASM INTERNATIONAL, Materials Park, OH, 2009, pp. 227–34.

  10. E. Deubelbeiss: Materialprüfung, 1974, vol. 16, pp. 240–44.

    Google Scholar 

  11. A. Saxena, S.J. Hudak, J.K. Donald, and D.W. Schmidt: J. Test. Evol., 1978, vol. 6, pp. 167–74.

    Article  Google Scholar 

  12. H.J. Rack and T.J. Headley: Metall. Trans. A, 1979, vol. 10A, pp. 909–20.

    Google Scholar 

  13. S. Ankem, D. Banerjee, D.J. McNeish, J.C. Williams, and S.R. Seagle: Metall. Trans. A, 1987, vol. 18A, pp. 2015–25.

    CAS  Google Scholar 

  14. M. Peters and C. Leyens: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinheim, 2003, pp. 153–82.

    Google Scholar 

  15. R.R. Boyer and R. Bajoraitis: in Beta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., TMS, Warrendale, PA, 1984, pp. 295–305.

  16. Y. Kawabe and S. Muneki: in Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 187–97.

  17. M. Niiomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1141–51.

    Article  Google Scholar 

  18. R.H. Van Stone, J.R. Low Jr., and J.L. Shannon, Jr.: Metall. Trans. A, 1978, vol. 9A, pp. 539–47.

    Google Scholar 

  19. R.H. Van Stone and T.B. Cox: ASTM STP 600, ASTM, Philadelphia, PA, 1976, pp. 5–29.

    Google Scholar 

  20. A.L. Pilchak and J.C. Williams: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 22–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Deutsche Forschungsgemeinschaft (DFG) for financially supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schmidt.

Additional information

Manuscript submitted March 3, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, P., El-Chaikh, A. & Christ, HJ. Effect of Duplex Aging on the Initiation and Propagation of Fatigue Cracks in the Solute-rich Metastable β Titanium Alloy Ti 38-644. Metall Mater Trans A 42, 2652–2667 (2011). https://doi.org/10.1007/s11661-011-0662-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0662-7

Keywords

Navigation