Skip to main content
Log in

Visualization of Hydrogen Diffusion in a Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To study the influence of hydrogen on the fatigue strength of AISI type 304 metastable austenitic stainless steel, specimens were cathodically charged with hydrogen. Using tension-compression fatigue tests, the behavior of fatigue crack growth from a small drill hole in the hydrogen-charged specimen was compared with that of noncharged specimen. Hydrogen charging led to a marked increase in the crack growth rate. Typical characteristics of hydrogen effect were observed in the slip band morphology and fatigue striation. To elucidate the behavior of hydrogen diffusion microscopically in the fatigue process, the hydrogen emission from the specimens was visualized using the hydrogen microprint technique (HMT). In the hydrogen-charged specimen, hydrogen emissions were mainly observed in the vicinity of the fatigue crack. Comparison between the HMT image and the etched microstructure image revealed that the slip bands worked as a pathway for hydrogen to move preferentially. Hydrogen-charging resulted in a significant change in the phase transformation behavior in the fatigue process. In the noncharged specimen, a massive type α′ martensite was observed in the vicinity of the fatigue crack. On the other hand, in the hydrogen-charged specimen, large amounts of ε martensite and a smaller amount of α′ martensite were observed along the slip bands. The results indicated that solute hydrogen facilitated the ε martensitic transformation in the fatigue process. Comparison between the results of HMT and EBSD inferred that martensitic transformations as well as plastic deformation itself can enhance the mobility of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Eliezer, D.G. Chakrapani, C.J. Altstetter, and E.N. Pugh: Metall. Trans. A, 1979, vol. 10A, pp. 935–41.

    CAS  Google Scholar 

  2. R. Liu, N. Narita, C. Altstetter, H. Birnbaum, and E.N. Pugh: Metall. Trans. A, 1980, vol. 11A, pp. 1563–74.

    CAS  Google Scholar 

  3. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799–1808.

    Google Scholar 

  4. T.P. Perng and C.J. Altstetter: Acta Metall., 1986, vol. 34, pp. 1771–81.

    Article  CAS  Google Scholar 

  5. T.P. Perng and C.J. Altstetter: Metall. Trans. A, 1987, vol. 18A, pp. 123–34.

    CAS  Google Scholar 

  6. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1327–39.

    Article  CAS  Google Scholar 

  7. Y. Murakami and H. Matsunaga: Int. J. Fatigue, 2006, vol. 28, pp. 1509–20.

    Article  CAS  Google Scholar 

  8. T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka, and Y. Murakami: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2604–19.

    Article  CAS  Google Scholar 

  9. L.W. Tsay, Y.C. Liu, D.-Y. Lin, and M.C. Young: Mater. Sci. Eng., 2004, vol. A384, pp. 177–83.

    CAS  Google Scholar 

  10. G. Schuster and C. Altstetter: Metall. Trans. A, 1983, vol. 14A, pp. 2077–84.

    CAS  Google Scholar 

  11. G. Schuster and C. Altstetter: Metall. Trans. A, 1983, vol. 14A, pp. 2085–90.

    CAS  Google Scholar 

  12. E. Tal-Gutelmacher, D. Eliezer, and E. Abramov: Mater. Sci. Eng., A, 2007, vols. 445–446, pp. 625–31.

    Google Scholar 

  13. N. Ohtani, S. Asano, Y. Fujishima, and Y. Yamamasu: J. Jpn. Inst. Met., 1973, vol. 37, pp. 746–53.

    CAS  Google Scholar 

  14. P. Rozenak and D. Eliezer: Mater. Sci. Eng., 1983, vol. 61, pp. 31–41.

    Article  CAS  Google Scholar 

  15. P. Rozenak and D. Eliezer: Acta Metall., 1987, vol. 35, pp. 2329–40.

    Article  CAS  Google Scholar 

  16. Q. Yang, L.J. Qiao, S. Chiovelli, and J.L. Luo: Scripta Mater., 1999, vol. 40, pp. 1209–14.

    Article  CAS  Google Scholar 

  17. O.A. El kebir and A. Szummer: Int. J. Hydrogen Energy, 2002, vol. 27, pp. 793–800.

    Article  CAS  Google Scholar 

  18. N.K. Kuromoto, A.S. Gimaraes, and C.M. Lepienski: Mater. Sci. Eng., 2004, vol. A381, pp. 216–22.

    CAS  Google Scholar 

  19. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, United Kingdom, 2002.

    Google Scholar 

  20. J. Ovejero-García: J. Mater. Sci., 1985, vol. 20, pp. 2623–29.

    Article  Google Scholar 

  21. H.K. Yalçì and D.V. Edmonds: Mater. Character., 1995, vol. 34, pp. 97–104.

    Article  Google Scholar 

  22. K. Ichitani and M. Kanno: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 545–51.

    Article  CAS  Google Scholar 

  23. K. Ichitani, S. Kuramoto, and M. Kanno: Corr. Sci., 2003, vol. 45, pp. 1227–41.

    Article  CAS  Google Scholar 

  24. A. Nagao, S. Kuramoto, K. Ichitani, and M. Kanno: Scripta Mater., 2001, vol. 45, pp. 1227–32.

    Article  CAS  Google Scholar 

  25. Y. Sakamoto and H. Katayama: J. Jpn. Inst. Met., 1982, vol. 46, pp. 805–14.

    CAS  Google Scholar 

  26. Y. Mine, C. Narazaki, K. Murakami, S. Matsuoka, and Y. Murakami: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 1097–1107.

    Article  CAS  Google Scholar 

  27. H. Uyama, M. Nakashima, K. Morishige, Y. Mine, and Y. Murakami: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 1066–74.

    Article  CAS  Google Scholar 

  28. H.K. Birnbaum: Scripta Metall. Mater., 1994, vol. 31, pp. 149–53.

    Article  CAS  Google Scholar 

  29. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol. A176, pp. 191–202.

    Google Scholar 

  30. Y. Mine, C. Narazaki, T. Kanezaki, S. Matsuoka, and Y. Murakami: Tetsu-to-Hagané, 2007, vol. 93, pp. 247–56.

    Article  CAS  Google Scholar 

  31. L.M. Foster, T.H. Jack, and W.W. Hill: Metall. Trans., 1970, vol. 1, pp. 3117–24.

    CAS  Google Scholar 

  32. J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards: Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  33. J.A. Donovan: Metall. Trans. A, 1976, vol. 7A, pp. 1677–83.

    CAS  Google Scholar 

  34. G. Itoh, K. Koyama, and M. Kanno: Scripta Mater., 1996, vol. 35, pp. 695–98.

    Article  CAS  Google Scholar 

  35. T. Ihara and G. Itoh: J. Jpn. Inst. Light Met., 2003, vol. 53, pp. 575–81.

    Article  CAS  Google Scholar 

  36. K. Hayashida, H. Matsunaga, and M. Endo: Proc. 4th Int. Conf. on Experimental Mechanics 2009 (ICEM 2009), CD-ROM.

  37. N. Narita, C.J. Altstetter, and H.K. Birnbaum: Metall. Trans. A, 1982, vol. 13A, pp. 1355–65.

    Google Scholar 

Download references

Acknowledgment

This research has been supported by the NEDO, Fundamental Research Project on Advanced Hydrogen Science (2006 to 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Matsunaga.

Additional information

Manuscript submitted May 4, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunaga, H., Noda, H. Visualization of Hydrogen Diffusion in a Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel. Metall Mater Trans A 42, 2696–2705 (2011). https://doi.org/10.1007/s11661-011-0661-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0661-8

Keywords

Navigation