Metallurgical and Materials Transactions A

, Volume 42, Issue 8, pp 2456–2465 | Cite as

Favorable Environment for a Nondendritic Morphology in Controlled Diffusion Solidification



The novelty of the controlled diffusion solidification (CDS) process is the mixing of two precursor alloys with different thermal masses to obtain the resultant desired alloy, which is subsequently cast into a near-net-shaped product. The critical event in the CDS process is the ability to generate a favorable environment during the mixing of the two precursor alloys to enable a well-distributed and copious nucleation event of the primary Al phase leading to a nondendritic morphology in the cast part. The turbulence dissipation energy coupled with the undercooling of the precursor alloy with the higher temperature enables the copious nucleation events, which are well distributed in the resultant mixture.


Alloy 1

precursor alloy with higher thermal mass (higher temperature and higher mass)

Alloy 2

precursor alloy with lower thermal mass

Alloy 3

resultant desired alloy

C1 and C2

average solute concentration of Alloys 1 and 2, respectively


transient solute concentration (Cu)




characteristic length

m1, m2, and mT

mass of Alloy 1, Alloy 2, and total mass, respectively


Weber number


solid-liquid interface

T1 and T2

temperatures of Alloys 1 and 2, respectively


actual temperature


temperature of point B

TL1, TL2, TL3

liquidus temperatures of Alloys 1, 2, and 3, respectively


melting temperature


quenching temperature




transient instantaneous position




dynamic viscosity


surface tension


  1. 1.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, pp. 133–53.Google Scholar
  2. 2.
    G. Wang, P. Lu, H.Y. Wang, and Q.C. Jiang: Mater. Lett., 2004, vol. 58, pp. 3852–56.CrossRefGoogle Scholar
  3. 3.
    Q.Q. Zhang, Z.Y. Cao, Y.F. Zhang, G.H. Su, and Y.B. Liu: J. Mater. Process. Technol., 2007, vol. 184, pp. 195–200.CrossRefGoogle Scholar
  4. 4.
    H.Q. Lin, J.G. Wang, H.Y. Wang, and Q.C. Jiang: J. Alloys Compd., 2007, vol. 431, pp. 141–47.CrossRefGoogle Scholar
  5. 5.
    E.J. Zoqui: J. Mater. Process. Technol., 2003, vols. 143–144, pp. 195–201.CrossRefGoogle Scholar
  6. 6.
    P.K. Seoa, S.M. Leeb, and C.G. Kang: J. Mater. Process. Technol., 2009, vol. 209, pp. 171–80.CrossRefGoogle Scholar
  7. 7.
    G. Hongmin1, Y. Xiangjie, and H. Bin: J. Wuhan Univ. Technol. Mater. Sci., 2008, Feb.Google Scholar
  8. 8.
    M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.CrossRefGoogle Scholar
  9. 9.
    D. Saha, S. Shankar, D. Apelian, and M.M. Makhlouf: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2174–80.CrossRefGoogle Scholar
  10. 10.
    K. Symeonidis: Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, Apr. 2009, pp. 44–49.Google Scholar
  11. 11.
    D. Apelian, M.M. Makhlouf, and D. Saha: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1771–76. CrossRefGoogle Scholar
  12. 12.
    D. Saha, S. Shankar, D. Apelian, and M. Makhlouf: Proc. John Campbell Honorary Symp., P. Crepeau and M. Tiryakioglu, eds., TMS, Warrendale, PA, 2004.Google Scholar
  13. 13.
    W.T. Olsen and R. Hultgren: Trans. AIME, 1950, vol. 188, p. 1323.Google Scholar
  14. 14.
    P. Duwez, R.H. Willens, and W. Klement, Jr.: J. Appl. Phys., 1960, vol. 31, p. 1136.CrossRefGoogle Scholar
  15. 15.
    V. Vishan and A.V. Narlikar: Mater. Res. Bull., 1976, vol. II, pp. I257–64.Google Scholar
  16. 16.
    A.A. Khalaf, P. Ashtari, and S. Shankar: Shaped Casting: The 3rd Int. Symp., J. Campbell, P.N. Crepeau, and M. Tiryakioglu, eds., TMS, Warrendale, PA, 2009, pp. 215–22.Google Scholar
  17. 17.
    A.A. Khalaf, P. Ashtari, and S. Shankar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 843–49.CrossRefGoogle Scholar
  18. 18.
    A.A. Khalaf: Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2010, pp. 72–90.Google Scholar
  19. 19.
    H. Bruus: Theoretical Microfluidics, Oxford University Press, Oxford, United Kingdom, 2008, pp. 123–36.Google Scholar
  20. 20.
    P. Srirangam: Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, Apr. 2010.Google Scholar
  21. 21.
    A. Wierzba: Exp. Fluids, 1990, vol. 9, pp. 59–64.CrossRefGoogle Scholar
  22. 22.
    S.M. Oak, B.J. Kim, W.T. Kim, M.S. Chun, and Y.H. Moon: J. Mater. Process. Technol., 2002, vols. 130–131, pp. 304–09.CrossRefGoogle Scholar
  23. 23.
    M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 32–57.Google Scholar
  24. 24.
    D. Apelian and M.M. Makhlouf: High Integrity Aluminum Die Casting (Alloys, Processes and Melt Preparation), North American Die Casting Association, Rosemont, IL, 2006, Item 307, pp. 3–15.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  1. 1.The Light Metal Casting Research Centre (LMCRC), Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations