Skip to main content
Log in

Decomposition of Y2Ti2O7 Particles in 8 Pct Cr Oxide-Dispersion-Strengthened Martensitic Steel during Tempering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Chemical composition analysis using inductively coupled plasma spectroscopy and phase identification using X-ray were performed on the extracted residues of 8 pct Cr martensitic steel strengthened by nanoscaled complex oxides, which consist of yttrium, titanium, and oxygen. Some Y2Ti2O7 particles, which were stable during normalizing, decomposed into Y2O3 and Ti2O3 during tempering. This reaction reversibly occurred between normalizing and tempering. Y2Ti2O7 particles formed in the steel had other constituents in solid solution as compared to the completely stoichiometric Y2Ti2O7 particles synthesized artificially in air. As for the mechanism of the decomposition of Y2Ti2O7 particles in the steel, segregation of oxygen to dislocations induced by normalizing caused the decomposition of Y2Ti2O7 during tempering. In addition to that, the interfacial strain between Y2O3 particles or Ti2O3 particles within Cr23C6 carbides, which are formed by tempering, was lower than the strain between Y2Ti2O7, which precipitated in Cr23C6 carbides or the matrix. This difference in interfacial strain could also promote the decomposition of the Y2Ti2O7 particles in the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Shiba, M. Enoeda, and S. Jitsukawa: J. Nucl. Mater., 2004, vols. 329–333, pp. 243–47.

    Article  Google Scholar 

  2. M. Tamura, H. Hayakawa, M. Tanimura, A. Hishinuma, and T. Kondo: J. Nucl. Mater., 1986, vols. 141–143, pp. 1067–73.

    Article  Google Scholar 

  3. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.

    Article  CAS  Google Scholar 

  4. A. Alamo, V. Lambard, Z. Averty, and M.H. Mathon: J. Nucl. Mater., 2004, vols. 329–333, pp. 333–37.

    Article  Google Scholar 

  5. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara: J. Nucl. Mater., 2002, vols. 307–311, pp. 773–77.

    Article  Google Scholar 

  6. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Kawashima: J. Nucl. Sci. Technol., 2002, vol. 39, pp. 872–79.

    Article  CAS  Google Scholar 

  7. R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, and M. Klimenkov: J. Nucl. Mater., 2002, vols. 307–311, pp. 769–72.

    Article  Google Scholar 

  8. A. Möslang, E. Diegele, M. Klimiankov, R. Lässer, R. Lindau, E. Materna-Morris, C. Petersen, R. Pippan, J.W. Rensman, M. Rieth, B. van der Schaaf, H.-C. Scheider, and F. Tavassoli: http://www-pub.iaea.org/mtcd/meetings/PDFplus/fusion-20-preprints/FT_p. 1–21.

  9. S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara, and T. Kobayashi: ISIJ Int., 2003, vol. 43, pp. 2038–45.

    Article  CAS  Google Scholar 

  10. S. Ohtsuka, S. Ukai, and M. Fujiwara: J. Nucl. Mater., 2006, vol. 351, pp. 241–46.

    Article  CAS  Google Scholar 

  11. M. Taneike, F. Abe, and K. Sawada: Nature, 2003, vol. 424, pp. 294–96.

    Article  CAS  Google Scholar 

  12. T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1600–03.

    Article  CAS  Google Scholar 

  13. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro: ISIJ Int., 1999, vol. 39, pp. 176–82.

    Article  CAS  Google Scholar 

  14. S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vols. 307–311, pp. 749–57.

    Article  Google Scholar 

  15. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell: J. Nucl. Mater., 2004, vols. 329–333, pp. 338–41.

    Article  Google Scholar 

  16. M.K. Miller, E.A. Kenik, K.F. Russell, L. Heatherly, D.T. Hoeler, and P.J. Maziasz: Mater. Sci. Eng., 2003, vol. A 353, pp. 140–45.

    Article  Google Scholar 

  17. M.J. Alinger, G.R. Odette, and D.T. Hoelzer: J. Nucl. Mater., 2004, vols. 329–333, pp. 382–86.

    Article  Google Scholar 

  18. S. Ukai and S. Ohtsuka: Mater. Jpn., 2005, vol. 44, pp. 749–56.

    CAS  Google Scholar 

  19. M. Alinger, G. Odette, and D. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.

    Article  CAS  Google Scholar 

  20. S. Yamashita, N. Akasaka, and S. Ohnuki: J. Nucl. Mater., 2004, vols. 329–333, pp. 377–81.

    Article  Google Scholar 

  21. K. Shiba: private communication, 2003.

  22. K. Shinozuka, M. Tamura, H. Esaka, K. Shiba, and K. Nakamura: J. Nucl. Mater., 2009, vol. 384, pp. 1–5.

    Article  CAS  Google Scholar 

  23. F.W. Jones: Proc. R. Soc. A, 166, vol. 166, pp. 16–43.

  24. M. Tamura, H. Kusuyama, K. Shinozuka, and H. Esaka: J. Nucl. Mater., 2007, vols. 367–370, pp. 137–41.

    Article  Google Scholar 

  25. M. Tamura, M. Nakamura, K. Shinozuka, and H. Esaka: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1060–76.

    Article  CAS  Google Scholar 

  26. M. Tamura, H. Kusuyama, K. Shinozuka, and H. Esaka: ISIJ Int., 2007, vol. 47, pp. 317–26.

    Article  CAS  Google Scholar 

  27. M. Tamura, Y. Haruguchi, M. Yamashita, Y. Nagaoka, K. Ohinata, K. Ohnishi, E. Itoh, H. Ito, K. Shinozuka, and H. Esaka: ISIJ Int., 2006, vol. 46, pp. 1693–1702.

    Article  CAS  Google Scholar 

  28. R.S. Roth, J.R. Dennis, and H.F. McMurdie, eds.: Phase Equilibrium Diagrams, The American Ceramic Society, Westerville, OH, 1887, vol. 6, pp. 181–82.

  29. N. Mizutani, A. Kitazawa, and M. Kato: Nippon Kagaku Kaishi, 1974, No. 9, pp. 1623–28.

  30. E.A. Marquis: Appl. Phys. Lett., 2008, vol. 95, 181904, pp. 1–3.

  31. M. Klimenkov, R. Lindau, and A. Möslang: J. Nucl. Mater., 2009, vols. 386–388, pp. 553–56.

    Article  Google Scholar 

  32. S. Ohtsuka, S. Ukai, M, Fujiwara, T. Kaito, and T. Narita: J. Nucl. Mater., 2004, vols. 329–333, pp. 372–76.

    Article  Google Scholar 

  33. J.H. Swisher and E.T. Turkdogan: Trans. TMS-AIME, 1967, vol. 239, pp. 426–31.

    CAS  Google Scholar 

  34. A.E. MacHale and R.S. Roth, eds.: Phase Equilibrium Diagrams, The American Ceramic Society, Westerville, OH, 1896, vol. 12, p. 112.

  35. D.V. Wilson: Acta Metall., 1957, vol. 5, pp. 293–302.

    Article  CAS  Google Scholar 

  36. M. Cohen: Trans. JIM, 1968, vol. 9, Suppl., pp. XXIII–XXIX.

  37. H. Kubota, I. Kozasu, H. Kido, and T. Shimizu: Tetsu-to-Hagané, 1968, vol. 54, pp. 954–66.

    CAS  Google Scholar 

  38. M. Tamura: Ferrum, 2009, vol. 14, pp. 347–52.

    CAS  Google Scholar 

  39. B.G. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  40. R.G. Baker and J. Nutting: ISI Spec. Rep., ISI Pub., London, 1959, No. 64, pp. 1–22.

  41. Z. Lu, R.G. Faulkner, N. Riddle, F.D. Martino, and K. Yang: J. Nucl. Mater., 2009, vols. 386–388, pp. 445–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tamura.

Additional information

Manuscript submitted: December 20, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, M., Sakasegawa, H., Shiba, K. et al. Decomposition of Y2Ti2O7 Particles in 8 Pct Cr Oxide-Dispersion-Strengthened Martensitic Steel during Tempering. Metall Mater Trans A 42, 2176–2188 (2011). https://doi.org/10.1007/s11661-011-0640-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0640-0

Keywords

Navigation