Skip to main content
Log in

Influence of Strain Rate on Compressive Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature

  • Symposium: Bulk Metallic Glasses VII
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The compressive-deformation behavior of the Zr50.7Cu28Ni9Al12.3 bulk metallic glass (BMG) was investigated over a wide strain-rate range at room temperature. The yield strength of the BMG studied is independent of the strain rates applied upon quasi-static loading; however, it decreases remarkably upon dynamic loading. Serrated flows and shear bands appear at low quasi-static strain rates; nevertheless, they vanish as the strain rate increases to 1.0 × 10−1 s−1. Cracks appearing on the side surface of the fractured sample after dynamic compression yield a strain-accommodation deformation mechanism upon dynamic loading. Scanning electron microscopy observations reveal that molten liquids increase on the fractured surfaces with increasing strain rate, indicating that adiabatic heating in the shear bands is enhanced as the strain rate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. INSTRON is a trademark of Instron, Canton, MA.

References

  1. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: Acta Mater., 2001, vol. 49, pp. 2645–52.

    Article  CAS  Google Scholar 

  2. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.

    CAS  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. 44, pp. 45–89.

    Article  Google Scholar 

  4. M.F. Ashby and A.L. Greer: Scripta Mater., 2006, vol. 54, pp. 321–26.

    Article  CAS  Google Scholar 

  5. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  6. A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schultz: Nanostruct. Mater., 1998, vol. 10, pp. 805–17.

    Article  CAS  Google Scholar 

  7. E.S. Park and D.H. Kim: Met. Mater. Int., 2004, vol. 11 pp. 19–27.

    Article  Google Scholar 

  8. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, pp. 503–11.

    Article  CAS  Google Scholar 

  9. G. Subhash, R.J. Dowding, and L.J. Kecskes: Mater. Sci. Eng. A, 2002, vol. 334, pp. 33–40.

    Article  Google Scholar 

  10. J.F. Sun, M. Yan, and J. Shen: Trans. Nonferrous Met. Soc. China, 2005, vol. 15, pp. 115–19.

    CAS  Google Scholar 

  11. H. Li, G. Subhash, X.L. Gao, and L.J. Kecskes: Scripta Mater., 2003, vol. 49, pp. 1087–92.

    Article  CAS  Google Scholar 

  12. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Intermetallics, 2002, vol. 10. pp. 1071–77.

    Article  CAS  Google Scholar 

  13. T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, and K.T. Ramesh: J. Mater. Res., 2002, vol. 17, pp. 1441–45.

    Article  CAS  Google Scholar 

  14. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Mater. Sci. Eng. A, 2008, vol. 473, pp. 105–10.

    Article  Google Scholar 

  15. W.F. Ma, H.C. Kou, J.S. Li, H. Chang, and L. Zhou: J. Alloys Compd., 2009, vol. 472, pp. 214–18.

    Article  CAS  Google Scholar 

  16. J. Zhang, J.M. Park, D.H. Kim, and H.S. Kim: Mater. Sci. Eng. A, 2007, vols. 449–451, pp. 290–94.

    Google Scholar 

  17. L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, and G.S. Yu: Intermetallics, 2005, vol. 13, pp. 827–32.

    Article  Google Scholar 

  18. Y.J. Sun, D.D. Qu, Y.J. Huang, K.-D. Liss, X.S. Wei, D.W. Xing, and J. Shen: Acta Mater., 2009, vol. 57, pp. 1290–99.

    Article  CAS  Google Scholar 

  19. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Mater. Sci. Eng. A, 2007, vols. 445–446, pp. 275–80.

    Google Scholar 

  20. S.X. Song and T.G. Nieh: Intermetallics, 2009, vol. 17, pp. 762–67.

    Article  CAS  Google Scholar 

  21. Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.

    Article  CAS  Google Scholar 

  22. W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, and P.K. Liaw: J. Mater. Res., 2006, vol. 21, pp. 2164–67.

    Article  CAS  Google Scholar 

  23. Z.F. Zhang, H. Zhang, X.F. Pan, J. Das, and J. Eckert: Philos. Mag. Lett., 2005, vol. 85, pp. 513–21.

    Article  CAS  Google Scholar 

  24. H. Bei, S. Xie, and E.P. George: Phys. Rev. Lett., 2006, vol. 96, p. 105503.

    Article  CAS  Google Scholar 

  25. S.X. Song, H. Bei, J. Wadsworth, and T.G. Nieh: Intermetallics, 2008, vol. 16, pp. 813–18.

    Article  CAS  Google Scholar 

  26. W.H. Jiang, G.J. Fan, H. Choo, and P.K. Liaw: Mater. Lett., 2006, vol. 60, pp. 3537–40.

    Article  CAS  Google Scholar 

  27. Z. Han, W.F. Wu, Y. Li, Y.J. Wei, and H.J. Gao: Acta Mater., 2009, vol. 57, pp. 1367–72.

    Article  CAS  Google Scholar 

  28. Y. Zhang and A.L. Greer: Appl. Phys. Lett., 2006, vol. 89, p. 071907.

    Article  Google Scholar 

  29. C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.

    Article  CAS  Google Scholar 

  30. J.T. Fan, F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, and S.X. Mao: J. Non-Cryst. Solids, 2007, vol. 353, pp. 4707–17.

    Article  CAS  Google Scholar 

  31. P.S. Steif, F. Spaepen, and J.W. Hutchinson: Acta Metall., 1982, vol. 30, pp. 447–55.

    Article  CAS  Google Scholar 

  32. F.F. Wu, Z.F. Zhang, F. Jiang, J. Sun, J. Shen, and S.X. Mao: Appl. Phys. Lett., 2007, vol. 90, p. 191909.

    Article  Google Scholar 

  33. F.F. Wu, Z.F. Zhang, B.L. Shen, S.X. Mao, and J. Eckert: Adv. Eng. Mater., 2008, vol. 10, pp. 727–30.

    Article  CAS  Google Scholar 

  34. J.J. Lewandowski and A.L. Greer: Nat. Mater., 2006, vol. 5, pp. 15–18.

    Article  CAS  Google Scholar 

  35. W.H. Jiang, H.H. Liao, F.X. Liu, H. Choo, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1822–30.

    Article  CAS  Google Scholar 

  36. G. Subhash and G. Ravichandran: ASM Handbook, Mechanical Testing and Evaluation, ASM INTERNATIONAL, Materials Park, OH, 2000, vol. 8, pp. 497–504.

  37. W. Chen, G. Subhash, and G. Ravichandran: Dymat. J., 1994, vol. 1, pp. 193–210.

    Google Scholar 

  38. G. Ravichandran and G. Subhash: J. Am. Ceram. Soc., 1994, vol. 77, pp. 263–67.

    Article  CAS  Google Scholar 

  39. L.L. Wang: Foundation of Stress Waves, National Defence Industry Press, Beijing, 2005 (in Chinese).

    Google Scholar 

  40. H. Kolsky: Stress Wave in Solids, Dover Publications, New York, NY, 1963.

    Google Scholar 

  41. L.F. Liu, L.H. Dai, Y.L. Bai, and B.C. Wei: J. Non-Cryst. Solids, 2005, vol. 351, pp. 3259–70.

    Article  CAS  Google Scholar 

  42. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067–4109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 10732010, 50871034, 50911120084, and 50771040, the Excellent Youth Foundation of Heilongjiang Province under Grant No. JC200806, and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology. PKL and GYW very much appreciate the support by the United States National Science Foundation (NSF), the Combined Research-Curriculum Development (CRCD) Program, under Grant Nos. EEC-9527527 and EEC-0203415, the Integrative Graduate Education and Research Training (IGERT) Program, under Grant No. DGE-9987548, the International Materials Institutes (IMI) Program, under Grant No. DMR-0231320, the Major Research Instrumentation (MRI) Program, under Grant No. DMR-0421219, the Division of Civil, Mechanical, Manufacture, and Innovation Program, under Grant No. CMMI-0900271, and the Materials World Network Program, under Grant No. DMR-00909037, with Ms. M. Poats and Drs. C.V. Hartesveldt, D. Dutta, P.W. Jennings, L.S. Goldberg, L. Clesceri, C. Huber, C.E. Bouldin, C.V. Cooper, D. Finotello, and A. Ardell as contract monitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shen.

Additional information

Manuscript submitted April 11, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Huang, Y.J., Wang, G.Y. et al. Influence of Strain Rate on Compressive Deformation Behavior of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature. Metall Mater Trans A 42, 1491–1498 (2011). https://doi.org/10.1007/s11661-011-0632-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0632-0

Keywords

Navigation