Skip to main content
Log in

Probing the Strain Hardening Response of Small Wear Volumes with Nanoindentation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to characterize the wear and related mechanical behavior of materials from small volumes, a program employing nanoscratch and nanoindentation was performed. Nanoscratch techniques were used to generate square wear patterns with varying degrees of shear strain followed by nanoindentation tests to measure the mechanical properties within the deformation area. Results show a systematic increase in hardness with both the applied load and number of nanoscratch passes. An analytical approach was used to determine the stress-strain response and strain hardening behavior of electroformed nickel. The strain hardening exponent determined from this method follows the work hardening behavior established from previous tensile tests, supporting the use of a nanomechanics-based approach for evaluating the mechanical properties of wear-tested material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Gianola and C. Erberl: JOM, 2009, vol. 61, pp. 24–25.

    Article  Google Scholar 

  2. D.S. Gianola, D.H. Warner, J.F. Molinari, and K.J. Hemker: Scripta Mater., 2006 vol. 55, pp. 649–52.

    Article  CAS  Google Scholar 

  3. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan: Acta Mater., 2008, vol. 56, pp. 580–92.

    Article  CAS  Google Scholar 

  4. D. Kiener, W. Grosinger, and G. Dehm: Scripta Mater., 2009, vol. 60, pp. 148–51.

    Article  CAS  Google Scholar 

  5. S.V. Prasad, J.R. Michael, and T.R. Christenson: Scripta Mater., 2003, vol. 48, pp. 255–60.

    Article  CAS  Google Scholar 

  6. S.M. Allameh, J. Lou, F. Kavishe, T. Buchheit, and W.O. Soboyejo: Mater. Sci. Eng. A, 2004, vol. 371, pp. 256–66.

    Article  Google Scholar 

  7. T.E. Buchheit, D.A. LaVan, J.R. Michael, T.R. Christenson, and S.D. Leith: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 539–54.

    Article  Google Scholar 

  8. P. Heilman, W.A.T. Clark, and D.A. Rigney: Acta Metall., 1983, vol. 31, pp. 1293–1305.

    Article  Google Scholar 

  9. D.A. Rigney and W.A. Glaeser: Wear, 1978, vol. 46, pp. 241–50.

    Article  CAS  Google Scholar 

  10. W.A. Glaeser: Wear, 1988, vol. 123, pp. 155–69.

    Article  CAS  Google Scholar 

  11. D.A. Rigney, R. Divakar, and S.M. Kuo: Scripta Metall., 1992, vol. 27, pp. 975–80.

    Article  CAS  Google Scholar 

  12. D.A. Rigney, X.Y. Fu, J.E. Hammerberg, B.L. Holian, and M.L. Falk: Scripta Mater., 2003, vol. 49, pp. 977–83.

    Article  CAS  Google Scholar 

  13. S.M. Kuo and D.A. Rigney: Mater. Sci. Eng. A, 1992, vol. 157, pp. 131–43.

    Article  Google Scholar 

  14. D.A. Hughes and N. Hansen: Philos. Mag., 2003, vol. 83, pp. 3871–93.

    Article  CAS  Google Scholar 

  15. D.A. Rigney: Wear, 1994, vol. 175, pp. 63–69.

    Article  Google Scholar 

  16. M.J. Cordill, N.R. Moody, S.V. Prasad, J.R. Micheal, and W.W. Gerberich: J. Mater. Res., 2009, vol. 24, pp. 844–52.

    Article  CAS  Google Scholar 

  17. T.R. Christenson: in MEMS Handbook, M. Gad-el-Hak, ed., CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  18. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    Article  CAS  Google Scholar 

  19. D.A. Rigney, L.H. Chen, M.G.S. Naylor, and A.R. Rosenfield: Wear, 1984, vol. 100, pp. 195–219.

    Article  CAS  Google Scholar 

  20. S.C. Lim, M.F. Ashby, and J.H. Brunton: Acta Metall., 1987, vol. 35, pp. 1343–48.

    Article  CAS  Google Scholar 

  21. J. Hruby: MRS Bull., 2001, vol. 26, p. 337.

    Article  CAS  Google Scholar 

  22. M.S. Bobji and S.K. Biswas: J. Mater. Res., 1999, vol. 14, pp. 2259–68.

    Article  CAS  Google Scholar 

  23. D.L. Joslin and W.C. Oliver: J. Mater. Res., 1990, vol. 5, pp. 123–26.

    Article  CAS  Google Scholar 

  24. T.F. Page, G.M. Pharr, J.C. Hay, W.C. Oliver, B.N. Lucas, E. Herbert, and L. Riester: Fundamentals of Nanoindentation and Nanotribology, Materials Research Society Symposia, N.R. Moody, W.W. Gerberich, S.P. Baker, and N. Burnham, eds., Materials Research Society, Pittsburgh, PA, 1998, vol. 522, pp. 53–64.

  25. R. Saha and W.D. Nix: Acta Mater., 2002, vol. 50, pp. 23–38.

    Article  CAS  Google Scholar 

  26. S. Harvey, H. Huang, S. Venkataraman, and W.W. Gerberich: J. Mater. Res., 1993, vol. 8, pp. 1291–99.

    Article  CAS  Google Scholar 

  27. G.M. Pharr, J.H. Strader, and W.C. Oliver: J. Mater. Res., 2009, vol. 24, pp. 653–66.

    Article  CAS  Google Scholar 

  28. W.W. Gerberich, N.I. Tymiak, D.E. Kramer, A. Daugela, J. Jungk, and M. Li: Phil. Mag. A, 2002, vol. 82, pp. 3349–60.

    CAS  Google Scholar 

  29. M.J. Cordill, D.M. Hallman, N.R. Moody, D.P. Adams, and W.W. Gerberich: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2154–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Cordill.

Additional information

Manuscript submitted September 26, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordill, M.J., Moody, N.R., Jungk, J.M. et al. Probing the Strain Hardening Response of Small Wear Volumes with Nanoindentation. Metall Mater Trans A 42, 2226–2232 (2011). https://doi.org/10.1007/s11661-011-0629-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0629-8

Keywords

Navigation