Skip to main content
Log in

Phase-Field Modeling of Austenite Formation from a Ferrite plus Pearlite Microstructure during Annealing of Cold-Rolled Dual-Phase Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The prediction of microstructure and, consequently, of mechanical properties, as a function of chemical composition and heat treatment parameters, is currently a major topic of scientific investigations. There has been considerable effort to investigate the phase transformation during cooling and its modeling. In comparison, the metallurgical processes of the ferrite-austenite transformation during heating and annealing have not been intensively studied. However, the austenite formation during heating and annealing has a great influence on the final microstructure, as it is one of the first steps in the complex microstructure development of modern high-strength strip steels. In this study, the simulation of austenite formation from a ferrite plus pearlite microstructure during heating is realized by means of a multiphase-field approach. For the description of pearlite dissolution, a simple pseudo-phase approximation is used, which neglects the substitutional elements. Instead, the modeling of austenite formation from ferrite is performed as a second step, taking into account the substitutional elements under LE negligible partitioning (LENP) conditions, using direct coupling to a commercial thermodynamic database. The results of these two-dimensional (2-D) simulations will be presented and compared with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.R. Speich and A. Szirmae: Trans. TMS-AIME, 1969, vol. 245, pp. 1063–74.

    CAS  Google Scholar 

  2. M. Hillert, K. Nilsson, and L.-E. Törndahl: J. Iron Steel Inst., 1971, vol. 1, pp. 49–66.

    Google Scholar 

  3. A. Roosz, Z. Gacsi, and G. Fuchs: Acta Metall., 1983, vol. 31, pp. 509–17.

    Article  CAS  Google Scholar 

  4. X.L. Cai, A.J. Garratt, and W.S. Owen: Metall. Trans. A, 1985, vol. 16A, pp. 543–56.

    CAS  Google Scholar 

  5. C.I. Garcia and A.J. Deardo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  6. F.G. Caballero, C. Capdevila, and C. Garcia de Andres: ISIJ Int., 2001, vol. 41, pp. 1093–1102.

  7. R.C. Dykhuizen, C.V. Robino, and G.A. Knorovsky: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 107–17.

    Article  CAS  Google Scholar 

  8. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  9. F.G. Caballero, C. Capdevila, and C. Garcia de Andres: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1283–91.

  10. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 7, pp. 721–27.

    Google Scholar 

  11. THERMO-CALC Software: http://www.thermocalc.com

  12. M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations, University Press, Cambridge, United Kingdom, 1998.

  13. M. Hillert: Scripta Mater., 2004, vol. 50, pp. 697–99.

    Article  CAS  Google Scholar 

  14. G. Inden and C.R. Hutchinson: Interfacial Conditions at the Moving Interface during Growth of Ferrite from Austenite in Fe-C-(X) Alloys, ISS and TMS, Warrendale, PA, 2003, pp. 65–79.

    Google Scholar 

  15. N. Saunders and A. Miodownik: CALPHAD Calculation of Phase Diagrams: a Comprehensive Guide, Elsevier, New York, NY, 1998.

  16. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: Phys. D, 1996, vol. 94, pp. 135–47.

    Article  Google Scholar 

  17. B. Böttger, U. Grafe, D. Ma, and S.G. Fries: Mater. Sci. Technol., 2000, vol. 16, pp. 1425–28.

    Article  Google Scholar 

  18. J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, p. 066122.

    Article  CAS  Google Scholar 

  19. B. Böttger, M. Apel, J. Eiken, P. Schaffnit, and I. Steinbach: Steel Res. Int., 2008, vol. 79, pp. 608–16.

    Google Scholar 

  20. J. Eiken: Int. J. Mater. Res., 2010, vol. 101 (4), pp. 503–09.

    CAS  Google Scholar 

  21. N. Warnken, D. Ma, M. Mathes, and I. Steinbach: Mater. Sci. Eng. A, 2005, vol. 413 (12), pp. 267–71.

  22. http://www.micress.de

  23. ThermoTech: http://www.sentesoftware.co.uk

  24. R.G. Thiessen: Ph.D. Thesis, TU Delft, Delft, 2006.

Download references

Acknowledgment

This research was carried out under Project No. MC5.06257 in the framework of the Research Programme of the Materials Innovation Institute M2i (www.M2i.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rudnizki.

Additional information

Manuscript submitted July 26, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudnizki, J., Böttger, B., Prahl, U. et al. Phase-Field Modeling of Austenite Formation from a Ferrite plus Pearlite Microstructure during Annealing of Cold-Rolled Dual-Phase Steel. Metall Mater Trans A 42, 2516–2525 (2011). https://doi.org/10.1007/s11661-011-0626-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0626-y

Keywords

Navigation