Skip to main content
Log in

Effects of Fe Addition on the Snoek-Type Damping Behavior of Surface-Oxidation-Treated Ti-Mo Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of Fe addition on the oxygen diffusion and the Snoek-type relaxation damping behavior of the Ti-15 wt pct Mo alloy were investigated in this study. After surface oxidation treatment, the Ti-15 wt pct Mo-1 wt pct Fe alloy exhibits a higher damping capacity compared to the Ti-15 wt pct Mo alloy. The dual-phase zone and the oxygen-enriched β-phase zone in the surface-oxidation-treated Ti-Mo alloys were determined by electron backscattered diffraction (EBSD) and hardness measurements. Based on the oxygen distributions in both alloys obtained through a diffusion model, the relative damping capacity of different zones contributing to the beam sample damping was estimated to be proportional to the thickness of the oxygen dissolved zones. On the other hand, the substitutional solute of Fe in the Ti-Mo-Fe alloy is considered to affect the oxygen distribution by lengthening the oxygen diffusion zone and increasing the oxygen concentration in this zone. As a result, the addition of Fe in Ti-Mo alloy improves the damping capacity of the surface-oxidation-treated alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.A. Wert: J. Phys. Chem. Solids, 1970, vol. 31, pp. 1771–83.

    Article  CAS  Google Scholar 

  2. M. Weller: Mater. Sci. Eng. A, 2006, vol. 442, pp. 21–30.

    Article  Google Scholar 

  3. M.S. Blanter, I.S. Golovin, H. Neuhäuser, and H.-R. Sinning: Internal Friction in Metallic Materials—a Handbook, Springer, Berlin, 2007.

    Google Scholar 

  4. F. Yin, S. Iwasaki, D. Ping, and K. Nagai: Adv. Mater., 2006, vol. 18, pp. 1541–44.

    Article  CAS  Google Scholar 

  5. F. Yin, L. Yu, and D. Ping: Mater. Sci. Eng. A, 2009, vols. 521–522, pp. 372–75.

    Google Scholar 

  6. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, The Materials Information Society, ASM INTERNATIONAL, Materials Park, OH, 1994.

    Google Scholar 

  7. Z.C. Szkopiak and J.T. Smith: J. Phys. D, 1975, vol. 8, pp. 1273–84.

    Article  CAS  Google Scholar 

  8. E. Miura, K. Ota, K. Yoshimi, and S. Hanada: Phil. Mag., 2003, vol. 83, pp. 2343–57.

    Article  CAS  Google Scholar 

  9. N.P. Kushnareva and S.E. Snejko: J. Alloys Compd., 1994, vols. 211–212, pp. 75–79.

    Article  Google Scholar 

  10. D.J. Lin, J.H.C. Lin, and C.P. Ju: Biomaterials, 2002, vol. 23, pp. 1723–30.

    Article  CAS  Google Scholar 

  11. M.S. Blanter and M.Y. Fradkov: Acta Metall. Mater., 1992, vol. 40, pp. 2201–08.

    Article  CAS  Google Scholar 

  12. H. Numakura and M. Koiwa: in M3d: Mechanics and Mechanisms of Material Damping, ASTM STP 1304, A. Wolfenden and V.K. Kinra, eds., West Conshohocken, PA, 1997, pp. 383–93.

  13. R. Cantelli and Z. Szkopiak: Appl. Phys. A, 1976, vol. 9, pp. 153–60.

    CAS  Google Scholar 

  14. H.W. Worner: J. Inst. Met., 1951, vol. 79, pp. 173–88.

    CAS  Google Scholar 

  15. N.P. Allen, T.H. Schofield, and B. Mellish: J. Inst. Met., 1954, vol. 82, pp. 534–38.

    CAS  Google Scholar 

  16. V.I. D’Yachkov: Russ. J. Appl. Chem., 2003, vol. 76, pp. 1025–30.

    Article  Google Scholar 

  17. J. Stringer: J. Inst. Met., 1962, vol. 90, pp. 298–303.

    CAS  Google Scholar 

  18. V.I. D’yachkov: Russ. J. Appl. Chem., 1998, vol. 71, pp. 1869–74.

    Google Scholar 

  19. C.J. Rosa: Metall. Trans., 1970, vol. 1, pp. 2517–22.

    CAS  Google Scholar 

  20. R. De Batist: Internal Friction and Structural Defects in Crystalline Solids, North-Holland, Amsterdam, 1972.

  21. A.R. Rosenfield: Nature, 1963, vol. 198, pp. 279–80.

    Article  CAS  Google Scholar 

  22. A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  23. R.S. Glass and Y.K. Hong: Electrochim. Acta, 1984, vol. 29, pp. 1465–70.

    Article  CAS  Google Scholar 

  24. Y. Shida and H. Anada: Mater. Trans., JIM, 1994, vol. 35, pp. 623–31.

    CAS  Google Scholar 

  25. P.A. Farrar, L.P. Stone, and H. Margolin: Trans. Am. Inst. Min. Metall. Eng., 1956, vol. 206, pp. 595–600.

    Google Scholar 

  26. R.J. Wasilewski and G.L. Kehl: J. Inst. Met., 1954, vol. 83, pp. 94–104.

    CAS  Google Scholar 

  27. J. Stringer, M.G. Cowgill, and N.C. Griffiths: Nature, 1960, vol. 185, p. 304.

    Article  CAS  Google Scholar 

  28. V. Raghavan: J. Phase Equilib., 2003, vol. 24, pp. 182–83.

    Article  CAS  Google Scholar 

  29. D.F. Hasson and R.J. Arsenault: J. Less-Common Met., 1972, vol. 27, pp. 417–18.

    Article  CAS  Google Scholar 

  30. H. Saitoh, N. Yoshinaga, and K. Ushioda: Acta Mater., 2004, vol. 52, pp. 1255–61.

    Article  CAS  Google Scholar 

  31. H.W. King: J. Mater. Sci., 1966, vol. 1, pp. 79–90.

    Article  CAS  Google Scholar 

  32. S. Asano: Jpn. J. Appl. Phys., 1969, vol. 8, pp. 539–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Lu.

Additional information

Manuscript submitted August 23, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Li, C., Yin, F. et al. Effects of Fe Addition on the Snoek-Type Damping Behavior of Surface-Oxidation-Treated Ti-Mo Alloys. Metall Mater Trans A 42, 2242–2249 (2011). https://doi.org/10.1007/s11661-011-0616-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0616-0

Keywords

Navigation