Metallurgical and Materials Transactions A

, Volume 42, Issue 8, pp 2323–2330 | Cite as

Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants

  • Michael P. De Cicco
  • Lih-Sheng Turng
  • Xiaochun LiEmail author
  • John H. Perepezko


Different types of nanoparticles in aluminum (Al) alloy A356 nanocomposites were shown to catalyze nucleation of the primary Al phase. Nanoparticles of SiC β, TiC, Al2O3 α, and Al2O3 γ were added to and dispersed in the A356 matrix as nucleation catalysts using an ultrasonic mixing technique. Using the droplet emulsion technique (DET), undercoolings in the nanocomposites were shown to be significantly reduced compared to the reference A356. None of the nanocomposites had a population of highly undercooled droplets that were observed in the reference samples. Also, with the exception of the A356/Al2O3 α nanocomposite, all nanocomposites showed a reduction in undercooling necessary for the onset of primary Al nucleation. The observed nanocomposite undercoolings generally agreed with the undercooling necessary for free growth. The atomic structure of the particles showed an influence on nucleation potency as A356/Al2O3 γ nanocomposites had smaller undercoolings than A356/Al2O3 α nanocomposites. The nucleation catalysis illustrates the feasibility of, and basis for, grain refinement in metal matrix nanocomposites (MMNCs).


Nanocomposite Sample TiB2 Particle High Undercoolings Free Growth Small Undercoolings 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.E. Quested: Mater. Sci. Technol., 2004, vol. 20, pp. 1357–69.CrossRefGoogle Scholar
  2. 2.
    S.F. Hassan and M. Gupta: Mater. Sci. Technol., 2004, vol. 20, pp. 1383–88.CrossRefGoogle Scholar
  3. 3.
    S.F. Hassan and M. Gupta: J. Compos. Mater., 2007, vol. 41, pp. 2533–43.CrossRefGoogle Scholar
  4. 4.
    Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, and C.Q. Wang: Compos. Sci. Technol., 2008, vol. 68, pp. 1463–70.CrossRefGoogle Scholar
  5. 5.
    X.C. Tong and H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 893–902.CrossRefGoogle Scholar
  6. 6.
    A.F. Zimmerman, G. Palumbo, K.T. Aust, and U. Erb: Mater. Sci. Eng. A, 2002, vol. 328, pp. 137–46.CrossRefGoogle Scholar
  7. 7.
    M.J. Tan and X. Zhang: Mater. Sci. Eng. A, 1998, vol. A244, pp. 80–85.Google Scholar
  8. 8.
    H. Ferkel and B.L. Mordike: Mater. Sci. Eng. A, 2001, vol. A298, pp. 193–99.Google Scholar
  9. 9.
    D.Y. Ying and D.L. Zhang: Mater. Sci. Eng., A, 2000, vol. 286, pp. 152–56.CrossRefGoogle Scholar
  10. 10.
    M.C. Flemings: Solidification Processing, McGraw-Hill Inc., New York, NY, 1974, pp. 290–327.Google Scholar
  11. 11.
    W.T. Kim and B. Cantor: Acta Metall. Mater., 1994, vol. 42, pp. 3115–27.CrossRefGoogle Scholar
  12. 12.
    N. Marasli and J.D. Hunt: J. Cryst. Growth, 1998, vol. 191, pp. 558–62.CrossRefGoogle Scholar
  13. 13.
    W.T. Kim and B. Cantor: Acta Metall. Mater., 1992, vol. 40, pp. 3339–47.CrossRefGoogle Scholar
  14. 14.
    W.T. Kim and B. Cantor: Acta Metall. Mater., 1994, vol. 42, pp. 3045–53.CrossRefGoogle Scholar
  15. 15.
    B. Cantor: Philos. Trans. R. Soc. A, 2003, vol. 361, pp. 409–17.CrossRefGoogle Scholar
  16. 16.
    A.L. Greer and T.E. Quested: Philos. Mag., 2006, vol. 86, pp. 3665–80.CrossRefGoogle Scholar
  17. 17.
    R.C. Weast: CRC Handbook of Chemistry and Physics, 65th ed., CRC Presses Inc., Boca Raton, FL, 1984, pp. D43–D46.Google Scholar
  18. 18.
    T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859–68.CrossRefGoogle Scholar
  19. 19.
    A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mater., 2003, vol. 5, pp. 81–91.CrossRefGoogle Scholar
  20. 20.
    A. Tronche and A.L. Greer: Philos. Mag. Lett., 2001, vol. 81, pp. 321–28.CrossRefGoogle Scholar
  21. 21.
    R. Gunther, C. Hartig, and R. Bormann: Acta Mater., 2006, vol. 54, pp. 5591–97.CrossRefGoogle Scholar
  22. 22.
    M. Qian: Acta Mater., 2007, vol. 55, pp. 943–53.CrossRefGoogle Scholar
  23. 23.
    B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.CrossRefGoogle Scholar
  24. 24.
    A. Luo: Can. Metall. Q., 1996, vol. 35, pp. 375–83.CrossRefGoogle Scholar
  25. 25.
    Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378–83.CrossRefGoogle Scholar
  26. 26.
    M.K. Hoffmeyer and J.H. Perepezko: Scripta Metall., 1988, vol. 22, pp. 1143–48.CrossRefGoogle Scholar
  27. 27.
    M. De Cicco, L.S. Turng, X. Li, and J.H. Perepezko: Solid State Phenomenon B: Diffus. Def. Data, 2008, vols. 141–143, pp. 487–92.Google Scholar
  28. 28.
    P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green: Mater. Sci. Technol., 1998, vol. 14, pp. 394–404. Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Michael P. De Cicco
    • 1
  • Lih-Sheng Turng
    • 1
  • Xiaochun Li
    • 1
    Email author
  • John H. Perepezko
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations