Skip to main content
Log in

Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different types of nanoparticles in aluminum (Al) alloy A356 nanocomposites were shown to catalyze nucleation of the primary Al phase. Nanoparticles of SiC β, TiC, Al2O3 α, and Al2O3 γ were added to and dispersed in the A356 matrix as nucleation catalysts using an ultrasonic mixing technique. Using the droplet emulsion technique (DET), undercoolings in the nanocomposites were shown to be significantly reduced compared to the reference A356. None of the nanocomposites had a population of highly undercooled droplets that were observed in the reference samples. Also, with the exception of the A356/Al2O3 α nanocomposite, all nanocomposites showed a reduction in undercooling necessary for the onset of primary Al nucleation. The observed nanocomposite undercoolings generally agreed with the undercooling necessary for free growth. The atomic structure of the particles showed an influence on nucleation potency as A356/Al2O3 γ nanocomposites had smaller undercoolings than A356/Al2O3 α nanocomposites. The nucleation catalysis illustrates the feasibility of, and basis for, grain refinement in metal matrix nanocomposites (MMNCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.E. Quested: Mater. Sci. Technol., 2004, vol. 20, pp. 1357–69.

    Article  CAS  Google Scholar 

  2. S.F. Hassan and M. Gupta: Mater. Sci. Technol., 2004, vol. 20, pp. 1383–88.

    Article  CAS  Google Scholar 

  3. S.F. Hassan and M. Gupta: J. Compos. Mater., 2007, vol. 41, pp. 2533–43.

    Article  CAS  Google Scholar 

  4. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, and C.Q. Wang: Compos. Sci. Technol., 2008, vol. 68, pp. 1463–70.

    Article  CAS  Google Scholar 

  5. X.C. Tong and H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 893–902.

    Article  CAS  Google Scholar 

  6. A.F. Zimmerman, G. Palumbo, K.T. Aust, and U. Erb: Mater. Sci. Eng. A, 2002, vol. 328, pp. 137–46.

    Article  Google Scholar 

  7. M.J. Tan and X. Zhang: Mater. Sci. Eng. A, 1998, vol. A244, pp. 80–85.

    CAS  Google Scholar 

  8. H. Ferkel and B.L. Mordike: Mater. Sci. Eng. A, 2001, vol. A298, pp. 193–99.

    CAS  Google Scholar 

  9. D.Y. Ying and D.L. Zhang: Mater. Sci. Eng., A, 2000, vol. 286, pp. 152–56.

    Article  Google Scholar 

  10. M.C. Flemings: Solidification Processing, McGraw-Hill Inc., New York, NY, 1974, pp. 290–327.

    Google Scholar 

  11. W.T. Kim and B. Cantor: Acta Metall. Mater., 1994, vol. 42, pp. 3115–27.

    Article  CAS  Google Scholar 

  12. N. Marasli and J.D. Hunt: J. Cryst. Growth, 1998, vol. 191, pp. 558–62.

    Article  CAS  Google Scholar 

  13. W.T. Kim and B. Cantor: Acta Metall. Mater., 1992, vol. 40, pp. 3339–47.

    Article  CAS  Google Scholar 

  14. W.T. Kim and B. Cantor: Acta Metall. Mater., 1994, vol. 42, pp. 3045–53.

    Article  CAS  Google Scholar 

  15. B. Cantor: Philos. Trans. R. Soc. A, 2003, vol. 361, pp. 409–17.

    Article  CAS  Google Scholar 

  16. A.L. Greer and T.E. Quested: Philos. Mag., 2006, vol. 86, pp. 3665–80.

    Article  CAS  Google Scholar 

  17. R.C. Weast: CRC Handbook of Chemistry and Physics, 65th ed., CRC Presses Inc., Boca Raton, FL, 1984, pp. D43–D46.

    Google Scholar 

  18. T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859–68.

    Article  CAS  Google Scholar 

  19. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mater., 2003, vol. 5, pp. 81–91.

    Article  CAS  Google Scholar 

  20. A. Tronche and A.L. Greer: Philos. Mag. Lett., 2001, vol. 81, pp. 321–28.

    Article  CAS  Google Scholar 

  21. R. Gunther, C. Hartig, and R. Bormann: Acta Mater., 2006, vol. 54, pp. 5591–97.

    Article  Google Scholar 

  22. M. Qian: Acta Mater., 2007, vol. 55, pp. 943–53.

    Article  CAS  Google Scholar 

  23. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  24. A. Luo: Can. Metall. Q., 1996, vol. 35, pp. 375–83.

    Article  CAS  Google Scholar 

  25. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378–83.

    Article  Google Scholar 

  26. M.K. Hoffmeyer and J.H. Perepezko: Scripta Metall., 1988, vol. 22, pp. 1143–48.

    Article  CAS  Google Scholar 

  27. M. De Cicco, L.S. Turng, X. Li, and J.H. Perepezko: Solid State Phenomenon B: Diffus. Def. Data, 2008, vols. 141–143, pp. 487–92.

    Google Scholar 

  28. P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green: Mater. Sci. Technol., 1998, vol. 14, pp. 394–404.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Additional information

Manuscript submitted August 18, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cicco, M.P., Turng, LS., Li, X. et al. Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants. Metall Mater Trans A 42, 2323–2330 (2011). https://doi.org/10.1007/s11661-011-0607-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0607-1

Keywords

Navigation