Skip to main content
Log in

Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth and dissolution behavior of primary Si and α-Al in partially molten hypereutectic Al-Si–based alloy particles was investigated using in situ TEM to reveal the dynamic and instantaneous processes occurring during these phenomena. Direct evidence for the preferential growth of Si {113} facets compared with {111} facets resulting in prominent {111} facets bounding the Si crystals was obtained. The nucleation of primary Si was found to occur heterogeneously on the encapsulating alumina shell, whereas the α-Al phase nucleated homogeneously from the liquid Al-Si phase. The morphology of primary Si during growth was found to be highly faceted during growth but smoothly curved during dissolution, revealing fundamental mechanistic differences during these processes. We provide a ledge-based interpretation to explain the difference in growth and dissolution behavior. The α-Al phase displayed smoothly curved growth and dissolution morphologies, which are characteristic of an isotropic interfacial energy and a continuous growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.A. Tiller: The Science of Crystallization, Cambridge University Press, Cambridge, UK, 1991.

    Book  Google Scholar 

  2. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  3. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

  4. D. T. J. Hurle: Handbook of Crystal Growth, Elsevier, New York, NY, 1993.

    Google Scholar 

  5. M. Glicksman: Diffusion in Solids, Wiley Interscience, New York, NY, 1999.

    Google Scholar 

  6. D. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, NY, 2002.

    Google Scholar 

  7. M. Elmadagli and A.T. Alpas: Wear, 2006, vol. 261, pp. 823-34.

    Article  CAS  Google Scholar 

  8. R.E. Napolitano, H. Meco, and C. Jung: JOM, 2004, vol. 56, no. 4, pp. 16-21.

    Article  CAS  Google Scholar 

  9. Y.E. Kalay, L.S. Chumbley, I.E. Anderson, and R.E. Napolitano: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 1452-57.

    Article  CAS  Google Scholar 

  10. M. Hillert: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 2688-90.

    Article  CAS  Google Scholar 

  11. J.M. Dowling, J.M. Corbett, and H.W. Kerr: J. Mater. Sci., 1987, vol. 22, 4504-13.

    Article  CAS  Google Scholar 

  12. R. Wang, W. Lu, and L.M. Hogan: Metall. Mater. Trans. A, 1997, vol. 28A, 1233-43.

    Article  CAS  Google Scholar 

  13. Valimet, Inc., Stockton, CA, 2004, http://www.valimet.com/.

  14. G.A. Storaska and J.M. Howe: Mater. Sci. Eng. A, 2004, vol. A368, pp. 183-90.

    CAS  Google Scholar 

  15. T. Yokota, J.M. Howe, and M. Murayama: Phys. Rev. Lett., 2003, vol. 91, pp. 265504.

    Article  Google Scholar 

  16. R. Oshima, F. Hori, M. Komatsu, and H. Mori: Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1430-32.

    Article  Google Scholar 

  17. W.E. King, G.H. Campbell1, A. Frank1, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber: J. Appl. Phys., 2005, vol. 97, p. 111101.

  18. A.K. Tan, C.K. Ong, and H.S. Tan: Semicond. Sci. Technol., 1988, vol. 3, pp. 1-5.

    Article  CAS  Google Scholar 

  19. A.G. Cullis, N.G. Chew, H.C. Webber, and D.J. Smith: J. Cryst. Growth, 1984, vol. 68, pp. 624-38.

    Article  CAS  Google Scholar 

  20. T. Abe: J. Cryst. Growth, 1974, vol. 24/25, pp. 463-67.

    Article  Google Scholar 

  21. C. Hayzelden and J.L. Batstone: MRS Symp. Proc., 1994, vol. 321, pp. 579-84.

    Article  CAS  Google Scholar 

  22. R. Sinclair: MRS Bull., 1994, vol. 19, no. 6, p. 26.

    CAS  Google Scholar 

  23. T.B. Massalski, W.A. Soffa, and D.E. Laughlin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 825-31.

    Article  CAS  Google Scholar 

  24. X. Zhang, D. Wang, and C. Yao: J. Mater. Sci. Lett., 2002, vol. 21, pp. 921-22.

    Article  CAS  Google Scholar 

  25. R.F. Sekerka: Cryst. Res. Tech., 2005, vol. 40, nos. 4/5, pp. 291-306.

    Article  CAS  Google Scholar 

  26. J.M. Bermond, J.J. Metois, X. Egea, and F. Floret: Surf. Sci., 1995, vol. 330, pp.48-60.

    Article  CAS  Google Scholar 

  27. D. Turnbull, R.E. Cech: J. Appl. Phys., 1950, vol. 21, pp. 804-10.

    Article  Google Scholar 

  28. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2004.

    Google Scholar 

  29. G.A. Storaska, K.T. Moore, and J.M. Howe: Philos. Mag. A, 2004, vol. 84, pp. 2619-34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santhana K. Eswara Moorthy.

Additional information

Manuscript submitted March 1, 2010.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPEG 67584 KB)

(MPEG 40563 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eswara Moorthy, S.K., Howe, J.M. Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy. Metall Mater Trans A 42, 1667–1674 (2011). https://doi.org/10.1007/s11661-010-0543-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0543-5

Keywords

Navigation