Skip to main content
Log in

Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-pressure torsion (HPT) has been used for investigating the influence of predeformation on the fracture toughness of a fully pearlitic rail steel. The use of HPT enables one to investigate changes in fracture toughness as a function of predeformation over a wide range of strain while simultaneously studying the influence of the crack plane orientation on the fracture toughness. With increasing prestrain, besides a strong increase in hardness, a pronounced anisotropy in the fracture toughness was found. Both the increase in hardness and the anisotropic fracture behavior can be attributed to the shear deformation process leading to an anisotropic composite structure on the nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-89.

    Article  CAS  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  CAS  Google Scholar 

  4. A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  CAS  Google Scholar 

  5. A. Ramesh, S.N. Melkote, L.F. Allard, L. Riester, and T.R. Watkins: Mater. Sci. Eng. A, 2005, vol. 390A, pp. 88-97.

    Google Scholar 

  6. K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi: Scripta Mater., 2001, vol. 44, pp. 977-83.

    Article  CAS  Google Scholar 

  7. W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka, W. Zielinski, and H.-J. Fecht: Mater. Sci. Eng. A, 2001, vol. 303A, pp. 197-208.

    Google Scholar 

  8. R.I. Carroll and J.H. Beynon: Wear, 2007, vol. 262, pp. 1253-66.

    Article  CAS  Google Scholar 

  9. D.F. Cannon and H. Pradier: Wear, 1996, vol. 191, pp. 1-13.

    Article  CAS  Google Scholar 

  10. J.W. Ringsberg, M. Loo-Morrey, B.L. Josefson, A. Kapoor, and J.H. Beynon: Inter. J. Fatigue, 2000, vol. 22, pp. 205-15.

    Article  CAS  Google Scholar 

  11. M. Takikawa and Y. Iriya: Wear, 2008, vol. 265, pp. 1300-08.

    Article  CAS  Google Scholar 

  12. P. Clayton and X. Su: Wear, 1996, vol. 200, pp. 63-73.

    Article  CAS  Google Scholar 

  13. A. Vorhauer and R. Pippan: Scripta Mater., 2004, vol. 51, pp. 921-25.

    Article  CAS  Google Scholar 

  14. C. Xu, A.P. Zhilyaev, Z. Horita, and T.G. Langdon: Mater. Sci. Forum, 2008, vols. 584–586, pp. 3–8.

  15. F. Wetscher, R. Stock, and R. Pippan: Mater. Sci. Eng., 2007, vols. 445–446A, pp. 237–43.

  16. F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan: Mater. Sci. Eng., 2004, vols. 387–389A, pp. 809–16.

  17. J.D. Emburry and R.M. Fisher: Acta Met., 1966, vol. 14, pp. 147-59.

    Article  Google Scholar 

  18. G. Langford: Metall. Trans. A, 1977, vol. 8, pp. 861-75.

    Article  Google Scholar 

  19. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.-J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555-70.

    Article  CAS  Google Scholar 

  20. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Dobatkin, A.O. Rodin, B. Baretzky, D. Goll, and G. Schütz: Mater. Sci. Eng. A, 2009, vol. 503A, pp. 185-89.

    Google Scholar 

  21. X. Sauvage and Y. Ivanisenko: J. Mater. Sci., 2007, vol. 42, pp. 1615-21.

    Article  CAS  Google Scholar 

  22. L.E. Miller and G.C. Smith: J.I.S.I., 1970, vol. 208, pp. 998-1005.

    Google Scholar 

  23. J.J. Lewandowski and A.W. Thompson: Metall. Trans. A, 1986, vol. 17A, pp. 1769-86.

    Article  CAS  Google Scholar 

  24. D.J. Alexander and I.M. Bernstein: Metall. Trans. A, 1989, vol. 20A, pp. 2321-35.

    CAS  Google Scholar 

  25. R. Pippan: Eng. Fract. Mech., 1993, vol. 44, pp. 821-29.

    Article  Google Scholar 

  26. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley & Sons Inc., New York, NY, 1996, pp. 409-18.

    Google Scholar 

  27. W. Guo, H. Dong, M. Lu, and X. Zhao: Int. J. Press. Vessels Pip., 2002, vol. 79, pp. 403-12.

    Article  CAS  Google Scholar 

  28. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.

    Article  CAS  Google Scholar 

  29. K.T.V. Rao, W. Yu, and R.O. Ritchie: Metal. Trans. A, 1989, vol. 20, pp. 485–97.

    Google Scholar 

  30. M.F. Ashby, K.E. Easterling, R. Harryson, and S.K. Maiti: Proc. R. Soc. A, 1985, vol. 398, pp. 261-80.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund FWF in the framework of Research Network S 10402 N16 and the Christian Doppler Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hohenwarter.

Additional information

Manuscript submitted December 21, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenwarter, A., Taylor, A., Stock, R. et al. Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel. Metall Mater Trans A 42, 1609–1618 (2011). https://doi.org/10.1007/s11661-010-0541-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0541-7

Keywords

Navigation