Metallurgical and Materials Transactions A

, Volume 42, Issue 5, pp 1325–1333 | Cite as

Compaction of Titanium Powders

Article

Abstract

Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

References

  1. 1.
    B.E. Hurles and F.H. (Sam) Froes: Amptiac Quart., 2002, vol. 6 (2), pp. 3–9.Google Scholar
  2. 2.
    P.C. Turner, A. Hartman, J.S. Hansen, and S.J Gerdemann: Low Cost Titanium—Myth or Reality, www.osti.gov/bridge/servlets/purl/899609-PMSrtc/.
  3. 3.
    F.E. Katrak: “Potential Growth in Non-Aerospace Usage of Titanium: and Implications for Titanium Process and Product R&D,” Final Report from Titanium Industry Workshop, Welches, OR, July 30-31, 1997, ASME, Washington, DC, pp. 71–90.Google Scholar
  4. 4.
    F.H. (Sam) Froes, M.N. Gungor, and M.A. Imam: JOM, 2007, vol. 59 (6), pp. 28–31.Google Scholar
  5. 5.
    R.M. German: Powder Inject. Mold. Int., 2009, vol. 3, no. 4, pp. 21-37.Google Scholar
  6. 6.
    R.M. German: Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, Princeton, NJ, 1994.Google Scholar
  7. 7.
    S.J. Gerdemann: Adv. Mater. Proc., 2001, vol. 159, no. 7, pp. 41–43.Google Scholar
  8. 8.
    F.H. Froes, M. Ashraf, and D. Frey, eds.: Cost-Affordable Titanium, TMS, Warrendale, PA, 2004.Google Scholar
  9. 9.
    D.E. Alman and S.J. Gerdemann: Powder Metall. Sci. Technol. Briefs, 2004, vol. 6, no. 1, pp. 11-14.Google Scholar
  10. 10.
    R.P. Seelig and J. Wulff: AIME Trans., 1946, vol. 166, pp. 492-505.Google Scholar
  11. 11.
    J. Liu and D.P. DeLo: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3117-24.CrossRefGoogle Scholar
  12. 12.
    I. Shapiro and M. Kolthoff: J. Phys. Coll. Chem., 1947, vol. 51, pp. 483-92.CrossRefGoogle Scholar
  13. 13.
    K. Konopicky: Radex-Rundschau., 1948, vol. 3, pp. 141-48.Google Scholar
  14. 14.
    R.W. Heckel: Trans. Metall. Soc. AIME, 1961, vol. 221, pp. 1001-08.Google Scholar
  15. 15.
    R.W. Heckel: Trans. Metall. Soc. AIME, 1961, vol. 221, pp. 671-675.Google Scholar
  16. 16.
    R. W. Heckel, Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 1073-74.Google Scholar
  17. 17.
    K. Kawakita and K.H. Ludde, Powder Technol., 1970/1971, vol. 4, pp. 61-68.CrossRefGoogle Scholar
  18. 18.
    P.J. Denny, Powder Technol., 2002, vol. 127, pp. 162-72.CrossRefGoogle Scholar
  19. 19.
    M.M. Carroll and K.T. Kim: Powder Metall., 1984, vol. 27, no. 3, pp. 153-59.Google Scholar
  20. 20.
    R. Panelli and F.A. Filho: Powder Technol., 2001, vol. 114, pp. 255-61.CrossRefGoogle Scholar
  21. 21.
    N.W. Page and M.K. Warpenius: Powder Technol., 1990, vol. 61, pp. 87-94.CrossRefGoogle Scholar
  22. 22.
    I. Shapiro, Proc. Int. Conf. Exhibition Powder Metall. Partic. Mater., vol. 1, 1997, pp. 2-97-2-114.Google Scholar
  23. 23.
    D.R. Armstrong, S.S. Borys, and R.P. Anderson: US Patent No. 5,779,761, July 14, 1998.Google Scholar
  24. 24.
    D.R. Armstrong, S.S. Borys, and R.P. Anderson: US Patent No. 5,958,106, September 28, 1999.Google Scholar
  25. 25.
    D.R. Armstrong, S.S. Borys, and R.P. Anderson: US Patent No. 6,409,797, June 25, 2002.Google Scholar
  26. 26.
    J. Secondi: Powder Metall., 2002, vol. 45, no. 3, pp. 213-17.CrossRefGoogle Scholar
  27. 27.
    P.J. James, Powder Metall., 1977, vol 20, no. 4, pp. 199-204.Google Scholar
  28. 28.
    R.L. Hewitt, W. Wallace, and M.C. de Malherberg: Powder Metall., 1974, vol. 17 (33).Google Scholar
  29. 29.
    H.F. Fischmeister and E. Arzt, Powder Metall., 1983, vol. 26, no. 2, pp. 82-88.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International (outside the USA) 2010

Authors and Affiliations

  1. 1.National Energy Technology LaboratoryAlbanyUSA

Personalised recommendations