Skip to main content
Log in

Microstructure and Mechanical Properties of Oxide-Dispersion Strengthened Al6063 Alloy with Ultra-Fine Grain Structure

Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Cite this article

Abstract

The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (~2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains (>100 nm) surrounded by nanostructured grains (<100 nm), revealing the formation of a bimodal grain structure. The grain size distribution was in the range of 20 to 850 nm with an average of 360 and 300 nm for Ar and Ar-5 pct O2 atmospheres, respectively. The amount of oxide particles formed by reactive mechanical alloying under the Ar/O2 atmosphere was ~0.8 vol pct, whereas the particles were almost uniformly distributed throughout the aluminum matrix. The UFG materials exhibited significant improvement in the hardness and yield strength with an absence of strain hardening behavior compared with CG material. The fracture surfaces showed a ductile fracture mode for both CG and UFG Al6063, in which the dimple size was related to the grain structure. A mixture of ductile–brittle fracture mode was observed for the UFG alloy containing 0.8 vol pct Al2O3 particles. The tensile behavior was described based on the formation of nonequilibrium grain boundaries with high internal stress and dislocation-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. S. Lim, T. Imai, Y. Nishidam, and T. Choh: Scripta Metall. Mater., 1995, vol. 32, pp. 1713-17.

    Article  CAS  Google Scholar 

  2. M.E. Smagorinski, P.G. Tsantrizos, S. Grenier, A. Cavasin, T. Brzezinski, and G. Kim: Mater. Sci. Eng. A, 1998, vol. 244A, pp. 86-90.

    Google Scholar 

  3. B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan: Mater. Sci. Eng. A, 2006, vol. 425A, pp. 192-200.

    Google Scholar 

  4. S.C. Tjong: Adv. Eng. Mater., 2007, vol. 9, pp. 639-52.

    Article  CAS  Google Scholar 

  5. D.C. Jia: Mater. Sci. Eng. A, 2000, vol. 289A, pp. 83-90.

    Google Scholar 

  6. M.W. Fu, Y.W. Tham, H.H. Hng, and K.B. Li: Mater. Sci. Eng. A, 2009, vol. 526A, pp. 84-92.

    Google Scholar 

  7. J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, and J.M. Torralba: Scripta Mater., 2002, vol. 47, pp. 243-48.

    Article  CAS  Google Scholar 

  8. Y.C. Kang and S.L. Chan: Mater. Chem. Phys., 2004, vol. 85, pp. 438-43.

    Article  CAS  Google Scholar 

  9. S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng. A, 2000, vol. 29A, pp. 49-113.

    Google Scholar 

  10. S.E. Broyles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1217-27.

    Article  CAS  Google Scholar 

  11. Y.L. Chen, A.R. Jones, and U. Miller: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2713-18.

    Article  CAS  Google Scholar 

  12. M. Heilmaier and B. Reppich: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3862-70.

    Google Scholar 

  13. S.J. Hwang and J.-H. Lee: Mater. Sci. Eng. A, 2005, vol. 405A, pp. 140-46.

    Google Scholar 

  14. J.M. Wu: Mater. Lett., 2001, vol. 48, pp. 324-30.

    Article  CAS  Google Scholar 

  15. S. Kleiner, F. Bertocco, F.A. Khalid, and O. Beffort: Mater. Chem. Phys., 2005, vol. 89, pp. 362-66.

    Article  CAS  Google Scholar 

  16. K.I. Moon and K.S. Lee: J. Alloys Compd., 1998, vol. 264, pp. 258-66.

    Article  CAS  Google Scholar 

  17. K.I. Moon and K.S. Lee: J. Alloys Compd., 1998, vol. 279, pp. 201-08.

    Article  Google Scholar 

  18. J. Cintas, F.G. Cuevas, J.M. Montes, and E.J. Herrera: Scripta Mater., 2005, vol. 53, pp. 1165-70.

    Article  CAS  Google Scholar 

  19. S. Saji, H. Yasuda, and T. Yamane: Mater. Sci. Eng. A, 1994, vol. 179-80A, 676-80.

    Google Scholar 

  20. R.Z. Valiev, M.Y. Murashkin, and I.P. Semenova: Metall. Mater. Trans. A, 2009, vol. 41A, pp. 816-22.

    Google Scholar 

  21. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  CAS  Google Scholar 

  22. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.

    Article  CAS  Google Scholar 

  23. A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  CAS  Google Scholar 

  24. T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V.S. Sarma: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2798-2801.

    Article  CAS  Google Scholar 

  25. J. Ye, L. Ajdelsztajn, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2569-79.

    Article  CAS  Google Scholar 

  26. D.B. Witkin and E.J. Lavernia: Progr. Mater. Sci., 2006, vol. 51, pp. 1-60.

    Article  CAS  Google Scholar 

  27. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743-74.

    Article  CAS  Google Scholar 

  28. M.A. Meyers, A. Mishra, and D.J. Benson: Progr. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  29. J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2261-71.

    Article  CAS  Google Scholar 

  30. K.-T. Park, Y.-S. Kim, J.G. Lee, and D.H. Shin: Mater. Sci. Eng. A, 2000, vol. 293A, pp. 165-72.

    Google Scholar 

  31. B.Q. Han and E.J. Lavernia: Adv. Eng. Mater., 2005, vol. 7, pp. 457-65.

    Article  CAS  Google Scholar 

  32. E. Demir, D. Raabe, and F. Roters: Acta Mater., 2010, vol. 58, pp. 1876-86.

    Article  CAS  Google Scholar 

  33. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, 22-31.

    Article  CAS  Google Scholar 

  34. M. Naranjo, J.A. Rodríguez, and E.J. Herrera, Scripta Mater., 2003, vol. 49, pp. 65-69.

    Article  CAS  Google Scholar 

  35. D.L. Zhang: Progr. Mater. Sci., 2004, vol. 49, pp. 537-60.

    Article  CAS  Google Scholar 

  36. Y.S. Park, K.H. Chung, N.J. Kim, and E.J. Lavernia: Mater. Sci. Eng. A, 2004, vol. 374A, pp. 211-16.

    Google Scholar 

  37. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 2973-82.

    Article  CAS  Google Scholar 

  38. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Mater. Sci. Eng. A, 1993, vol. 168A, pp. 141-48.

    Google Scholar 

  39. B.Q. Han and T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 410-411A, pp. 430-4.

    Google Scholar 

  40. T. Qian, M. Marx, K. Schuler, M. Hockauf, and H. Vehoff: Acta Mater., 2010, vol. 58, pp. 2112-23.

    Article  CAS  Google Scholar 

  41. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1525-34.

    Article  CAS  Google Scholar 

  42. J. May, M. Dinkel, D. Amberger, H.W. Höppel, and M. Göken: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1941-45.

    Article  CAS  Google Scholar 

  43. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 1976, pp. 188-91.

    Google Scholar 

  44. Y.G. Ko, D.H. Shin, K.-T. Park, and C.S. Lee: Scripta Mater., 2006, vol. 54, pp. 1785-89.

    Article  CAS  Google Scholar 

  45. F. Tang, M. Hagiwara, and J.M. Schoenung: Mater. Sci. Eng., 2005, vol. 407, pp. 306-14.

    Article  Google Scholar 

  46. E.J. Lavernia, B.Q. Han, and J.M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493A, pp. 207-14.

    Google Scholar 

  47. B.P. Kashyap, P.D. Hodgson, Y. Estrin, I. Timokhina, M.R. Barnett, and I. Sabirov: Metall. Mater. Trans. A, 2009, 40A, pp. 3294-3303.

    Article  CAS  Google Scholar 

  48. P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth, London, UK, 1965.

    Google Scholar 

  49. J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung: Scripta Mater., 2005, vol. 53, pp. 481-86.

    Article  CAS  Google Scholar 

  50. W.D. Callister, Jr.: Materials Science and Engineering an Introduction, 6th ed., Wiley, New York, NY, 2003, pp. 741-49.

    Google Scholar 

  51. B. Cao, S.P. Joshi, and K.T. Ramesh: Scripta Mater., 2009, vol. 60, pp. 619-22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simchi.

Additional information

Manuscript submitted March 6, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asgharzadeh, H., Simchi, A. & Kim, H.S. Microstructure and Mechanical Properties of Oxide-Dispersion Strengthened Al6063 Alloy with Ultra-Fine Grain Structure. Metall Mater Trans A 42, 816–824 (2011). https://doi.org/10.1007/s11661-010-0510-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0510-1

Keywords

Navigation