Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 10, pp 3035–3045 | Cite as

Processing of Ultrafine-Grained Materials through the Application of Severe Plastic Deformation

  • Megumi KawasakiEmail author
Symposium: Structural Materials for the Americas

Abstract

Processing through the application of severe plastic deformation (SPD) has become an absorbing tool because it provides the potential for refining the grain size of polycrystalline bulk metals to the submicrometer or even the nanometer level. Several SPD methods are now available, but the more promising procedures seem to be equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). This report examines these procedures with an emphasis on the principles of grain refinement and the mechanical properties developed at high temperatures in materials after processing by ECAP and the hardness homogeneity and microstructural evolution in materials processed by HPT. Moreover, recent observations on the ECAP and HPT processing also are discussed.

Keywords

Duplex Stainless Steel Orientation Image Microscope Superplastic Flow Severe Plastic Deformation Processing ECAP Pass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by the National Science Foundation of the United States under Grant No. DMR-0855009.

References

  1. 1.
    E.O. Hall: Proc. Roy. Soc. B, 1951, vol. 64, pp. 747-53.Google Scholar
  2. 2.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.Google Scholar
  3. 3.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-89.CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev: Nature Mater., 2004, vol. 3, pp. 511-16.CrossRefGoogle Scholar
  5. 5.
    R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881-981.CrossRefGoogle Scholar
  6. 6.
    A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.CrossRefGoogle Scholar
  7. 7.
    M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328-32.Google Scholar
  8. 8.
    M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2002, vol. A332, pp. 97-109.Google Scholar
  9. 9.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143-46.CrossRefGoogle Scholar
  10. 10.
    K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589-99.CrossRefGoogle Scholar
  11. 11.
    K. Furuno, H. Akamatsu, K. Oh-ishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2004, vol. 52, pp. 2497-2507.CrossRefGoogle Scholar
  12. 12.
    M. Kawasaki, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2009, vol. A524, pp. 143-50.Google Scholar
  13. 13.
    S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon, and T.R. McNelley: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2173-84.CrossRefGoogle Scholar
  14. 14.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503-10.CrossRefGoogle Scholar
  15. 15.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317-31.CrossRefGoogle Scholar
  16. 16.
    M. Nemoto, Z. Horita, M. Furukawa, and T.G. Langdon: Metals Mater., 1998, vol. 4, pp.1181-90.CrossRefGoogle Scholar
  17. 17.
    T.G. Langdon: Metall. Trans. A, 1982, vol. 13A, pp. 689-701.Google Scholar
  18. 18.
    M. Kawasaki, I.J. Beyerlein, S.C. Vogel, and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 2307-17.CrossRefGoogle Scholar
  19. 19.
    J.E. Bird, A.K. Mukherjee, and J.E. Dorn: Quantitative Relation Between Properties and Microstructure, Eds. D.G. Brandon and A. Rosen, Israel Universities Press, Jerusalem, Israel, 1969, pp. 255-342.Google Scholar
  20. 20.
    V. Sklenička, J. Dvořák, and M. Svoboda: Mater. Sci. Eng., 2004, vol. A387-389, pp. 696-701.Google Scholar
  21. 21.
    V. Sklenička, J. Dvořák, P. Kral, Z. Stonawska, and M. Svoboda: Mater. Sci. Eng., 2005, vols. A410-1, pp. 408-12.Google Scholar
  22. 22.
    V. Sklenička, J. Dvořák, and M. Svoboda: Nanomaterials by Severe Plastic Deformation—NanoSPD2, Eds. M.J. Zehetbauer and R.Z. Valiev, Wiley-VCH, Weinheim, Germany, 2002, pp. 200-06.Google Scholar
  23. 23.
    V. Sklenička, J. Dvořák, and M. Svoboda: Ultrafine Grained Materials III, Eds. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, and T.C. Lowe, The Minerals, Metals and Materials Society, Warrendale, PA, 2004, pp. 647-52.Google Scholar
  24. 24.
    V. Sklenička, J. Dvořák, M. Kvapilova, M. Svoboda, P. Král, I. Saxl, and Z. Horita: Mater. Sci. Forum, 2007, vols. 539–543, pp. 2904-09.CrossRefGoogle Scholar
  25. 25.
    J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, and T.G. Langdon: J. Mater. Res., 1993, vol. 8, pp. 2810-18.CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 2973-82.CrossRefGoogle Scholar
  27. 27.
    Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1996, vol. 11, pp. 1880-90.CrossRefGoogle Scholar
  28. 28.
    C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A398, pp. 66-76.Google Scholar
  29. 29.
    M. Prell, C. Xu, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A480, pp. 449-55.Google Scholar
  30. 30.
    M. Kawasaki and T.G. Langdon: Mater. Trans., 2008, vol. 49, pp. 84-89.CrossRefGoogle Scholar
  31. 31.
    P. Kumar, C. Xu, and T.G. Langdon: Mater. Sci. Eng., 2006, vol. A429, pp. 324-28.Google Scholar
  32. 32.
    A.H. Chokshi and T.G. Langdon: Acta Metall., 1989, vol. 37, pp. 715-23.CrossRefGoogle Scholar
  33. 33.
    M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A241, pp. 122-28.Google Scholar
  34. 34.
    M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1782-96.CrossRefGoogle Scholar
  35. 35.
    R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705-12.CrossRefGoogle Scholar
  36. 36.
    F. Wetscher, A. Vorhauer, R. Stock, and A. Pippan: Mater. Sci. Eng., 2004, vols. A387–389, pp. 809-16.Google Scholar
  37. 37.
    F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu, and G. Dehm: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1963-68.CrossRefGoogle Scholar
  38. 38.
    C. Xu, Z. Horita, and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7286-92.CrossRefGoogle Scholar
  39. 39.
    M. Kawasaki and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A498, pp. 341-48.Google Scholar
  40. 40.
    G. Sakai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A393, pp. 344-51.Google Scholar
  41. 41.
    A. Vorhauer and R. Pippan: Scripta Mater., 2004, vol. 51, pp. 921-25.CrossRefGoogle Scholar
  42. 42.
    C. Xu, Z. Horita, and T.G. Langdon: Acta Mater., 2007, vol. 55, pp. 203-12.CrossRefGoogle Scholar
  43. 43.
    M. Kawasaki, B. Ahn, and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4583-93.CrossRefGoogle Scholar
  44. 44.
    M. Kawasaki, B. Ahn, and T.G. Langdon: Acta Mater., 2010, vol. 58, pp. 919-30.CrossRefGoogle Scholar
  45. 45.
    M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res., 1996, vol. 11, pp. 2128-30.CrossRefGoogle Scholar
  46. 46.
    Y. Cao, Y.B. Wang, S.N. Alhajeri, X.Z. Liao, W.L. Zheng, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: J. Mater. Sci., 2010, vol. 45, pp. 765-70.CrossRefGoogle Scholar
  47. 47.
    Y. Cao, M. Kawasaki, Y.B. Wang, S.N. Alhajeri, X.Z. Liao, W.L. Zheng, S.P. Ringer, Y.T. Zhu, and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4545-53.CrossRefGoogle Scholar
  48. 48.
    M. Kawasaki, B. Ahn, and T.G. Langdon: Mater. Sci. Eng., 2010, vol. A527, pp. 7008-16.Google Scholar
  49. 49.
    L. Balogh, T. Ungár, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 809-20.CrossRefGoogle Scholar
  50. 50.
    C. Xu, Z. Horita, and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 5168-76.CrossRefGoogle Scholar
  51. 51.
    M. Kawasaki, V. Sklenička, and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 271-74.CrossRefGoogle Scholar
  52. 52.
    M. Kawasaki, S. Lee, and T.G. Langdon: Scripta Mater., 2009, vol. 61, pp. 963-66.CrossRefGoogle Scholar
  53. 53.
    M. Kawasaki, C. Xu, and T.G. Langdon: Acta Mater., 2005, vol. 53, pp. 5353-64.CrossRefGoogle Scholar
  54. 54.
    M. Kawasaki, Y. Huang, C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vols. A410–411, pp. 402-07.Google Scholar
  55. 55.
    M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7360-65.CrossRefGoogle Scholar
  56. 56.
    G. Sakai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A406, pp. 268-73.Google Scholar
  57. 57.
    Y. Harai, K. Edalati, Z. Horita, and T.G. Langdon: Acta Mater., 2009, vol. 57, pp. 1147-53.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations