Skip to main content
Log in

A New Paradigm for Designing High-Fracture-Energy Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The steels used for structural and other applications ideally should have both high strength and high toughness. Most high-strength steels contain substantial carbon content that gives poor weldability and toughness. A theoretical study is presented that was inspired by the early work of Weertman on the effect that single or clusters of solute atoms with slightly different atom sizes have on dislocation configurations in metals. This is of particular interest for metals with high Peierls stress. Misfit centers that are coherent and coplanar in body-centered cubic (bcc) metals can provide sufficient twisting of nearby screw dislocations to reduce the Peierls stress locally and to give improved dislocation mobility and hence better toughness at low temperatures. Therefore, the theory predicts that such nanoscale misfit centers in low-carbon steels can give both precipitation hardening and improved ductility and fracture toughness. To explore the validity of this theory, we measured the Charpy impact fracture energy as a function of temperature for a series of low-carbon Cu-precipitation-strengthened steels. Results show that an addition of 0.94 to 1.49 wt pct Cu and other accompanying elements results in steels with high Charpy impact energies down to cryogenic temperatures (198 K [–75 °C]) with no distinct ductile-to-brittle transition. The addition of 0.1 wt pct Ti results in an additional increase in impact toughness, with Charpy impact fracture energies ranging from 358 J (machine limit) at 248 K (–25 °C) to almost 200 J at 198 K (–75 °C). Extending this concept of using coherent and coplanar misfit centers to decrease the Peierls stress locally to other than bcc iron-based systems suggests an intriguing possibility of developing ductile hexagonal close-packed alloys and intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.P. Coldren and T.B. Cox: Technical report DTNSRDC/SME-CR-07-86, David Taylor Research Laboratory, Bethesda, MD, 1986.

    Google Scholar 

  2. T.W. Montemarano, B.P. Sachs, J.P. Gudas, M.G. Vasilaros, and H.H. Vandervelt: J. Ship Prod., 1986, vol. 3, pp. 145-62.

    Google Scholar 

  3. E.J. Czyricka, R.E. Link, J. Wong, D.A. Aylor, T.W. Montemarano, and J.P. Gudas: Nav. Eng. J., 1990, vol. 102, pp. 63-82.

    Article  Google Scholar 

  4. R.P. Foley: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1992.

  5. R.P. Foley and M.E. Fine: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and other Modern Low Alloy Steels, ISS-AIME, Littleton, CO, 1991, pp. 315–30.

  6. R.P. Foley and M.E. Fine: Proc. Speich Symposium, ISS-AIME, Littleton, CO, 1992, pp. 139-53.

    Google Scholar 

  7. R. Rana, S.B. Singh, W. Bleck, and O.N. Mohanty: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 856-66.

    Article  CAS  ADS  Google Scholar 

  8. C.S. Smith and E.W. Palmer: Trans. AIME, 1933, vol. 105, pp.133-40.

    Google Scholar 

  9. S.K. Lahiri: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1969.

  10. S.K. Lahiri and M.E. Fine: Metall. Trans., 1970, vol. 1, pp. 1495-99.

    Article  CAS  Google Scholar 

  11. S.K. Lahiri, D. Chandra, L.H. Schwartz, and M.E. Fine: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 1865-68.

    CAS  Google Scholar 

  12. E. Hornbogen and R. C. Glen: Trans. Metall. Soc. AIME, 1960, vol. 218, p. 1064.

    CAS  Google Scholar 

  13. E. Hornbogen: Trans. ASM, 1964, vol. 57, p. 120.

    Google Scholar 

  14. A. Deschamps. M. Militzer, and W. J. Poole: ISIJ Int., 2001, vol. 42, p. 196-205.

    Article  Google Scholar 

  15. S.R. Goodman, S.S. Brenner, and J.R. Low: Metall. Trans., 1973, vol. 4, pp. 2363-69, 2371-8.

    Article  CAS  Google Scholar 

  16. G.R. Speich, A.J. Schwoeble, and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 2031-37.

    Article  CAS  Google Scholar 

  17. J. Weertman: Phys. Rev., 1956, vol. 101, pp. 1429-30.

    Article  CAS  ADS  Google Scholar 

  18. J. Weertman: J Appl. Phys., 1958, vol. 29, pp. 1685-87.

    Article  CAS  ADS  Google Scholar 

  19. W. Dickenscheid: Technical report AFML-TR-68-18, Universitaet Des Saarlandes Saarbruecken, Saarbruecken, Germany, 1968.

  20. A. Urakami: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1970.

  21. A. Urakami and M.E. Fine: Scripta Metall., 1970, vol. 4, pp. 667-72.

    Article  Google Scholar 

  22. Metals Handbook, Volume 1, ASM International, Materials Park, OH, 1978, p. 691.

  23. C. Zhang and M. Enmoto: Acta Mater., 2006, vol. 54, p. 4183-91.

    Article  CAS  Google Scholar 

  24. G.R. Speich, A.J. Schwoeble, and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 2031-37.

    Article  CAS  Google Scholar 

  25. S.W. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1573-84.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Infrastructure Technology Institute at Northwestern University, a national university transportation center, and by the Center for the Commercialization of Innovative Transportation Technology at Northwestern University, a university transportation center program of the Research and Innovative Technology Administration of the U.S. Department of Transportation, both through support from the Safe, Accountable, Flexible, Efficient Transportation Equity Act. Also, this work was funded by the National Science Foundation under Grant CCMI 0826535. Atom-probe tomography was performed at the Northwestern Center for Atom-Probe Tomography. The LEAP tomograph was purchased with funding from the National Science Foundation Major Research Instrumentation Program and the Office of Naval Research Defense University Research Instrumentation Program. One author (S.P.B.) acknowledges the encouragement and permission of ArcelorMittal Global R&D for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Fine.

Additional information

Manuscript submitted June 17, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fine, M.E., Vaynman, S., Isheim, D. et al. A New Paradigm for Designing High-Fracture-Energy Steels. Metall Mater Trans A 41, 3318–3325 (2010). https://doi.org/10.1007/s11661-010-0485-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0485-y

Keywords

Navigation