Skip to main content

Advertisement

Log in

Formation of Hydroxyapatite Coating on Anodic Titanium Dioxide Nanotubes via an Efficient Dipping Treatment

  • Symposium: Coatings for Structural, Biological, and Electronic Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) depositions on metallic biomedical implants have been widely applied to generate bioactive surfaces in simulated biological environments. Meanwhile, highly ordered TiO2 nanotubes obtained via anodization have attracted increasing interest for biomedical applications. However, the capability to grow HA coating on TiO2 nanotubes at room temperature remains problematic. In this study, we applied a dipping treatment for biomimetic formation of an adhesive HA coating on titanium dioxide nanotubes. The coatings formed using this procedure did not require high-temperature annealing or high supersaturation of the simulated biological condition. The as-formed TiO2 nanotubes on titanium were treated using several dip-and-dry steps, through which the TiO2 nanotubes were filled and covered with calcium phosphate nucleation sites. The specimens readily grew HA once immersed in the original simulated biological fluid (SBF) after little more than 12 hours. The carbonated HA coating was formed with 10-μm thickness after 4 days of immersion, while only a few calcium phosphate particles were observed on annealing TiO2 nanotubes immersed in the same solution for the same duration. Tensile testing showed that the bonding strength between HA coating and substrate was 27.2 ± 1.6 MPa. This treatment dramatically improved efficiency for promoting HA formation on anodic TiO2 nanotubes at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, and R.D. Woody: J. Oral. Max. Impl., 2000, vol. 11, pp. 675–90.

    Google Scholar 

  2. A.C. Fraker: Corrosion and Degradation of Implant Materials, 2nd Int. Symp., A.C. Fraker and C.D. Griffin, eds., ASTM, Philadelphia, PA, 1985, pp. 384–90.

  3. S. Tamilselvi, V. Raman, and N. Rajendran: Electrochim. Acta, 2006, vol. 52, pp. 839–46.

    Article  CAS  Google Scholar 

  4. W. Österle, D. Klaffke, M. Griepentrog, U. Gross, I. Kranz, and C. Knabe: Wear, 2008, vol. 264, pp. 505–17.

    Article  Google Scholar 

  5. M. Textor, C. Sittig, V. Frauchiger, S. Tosatti, and D. Brunette: in Titanium in Medicine: Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications, D. Brunette, D. Tengvall, M. Textor, and P. Thomsen, eds., Springer-Verlag, Berlin, 2001, pp. 171–244.

  6. Y. Han, S.-H. Hong, and K. Xu: Surf. Coat. Technol., 2003, vol. 168, pp. 249–58.

    Article  CAS  Google Scholar 

  7. R. Wang and K. Duan: J. Mater. Chem., 2006, vol. 16, pp. 2309–24.

    Article  Google Scholar 

  8. X. Liu, P.K. Chu, and C. Ding: Mater. Sci. Eng. R, 2004, vol. 47, pp. 49–124.

    Article  Google Scholar 

  9. Y. Yang, J.L. Ong, and J. Tian: Biomaterials, 2003, vol. 24, pp. 619–27.

    Article  CAS  Google Scholar 

  10. X. Zhao, X. Liu, and C. Ding: J. Biomed. Mater. Res., 2005, vol. 75A, pp. 888–94.

    Article  CAS  Google Scholar 

  11. D.K. Pattanayak, T. Kawai, T. Matsushita, H. Takadama, T. Nakamura, and T. Kokubo: J. Mater. Sci. Mater. Med., 2009, vol. 20, pp. 2401–11.

    Article  CAS  Google Scholar 

  12. H.-M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura: J. Biomed. Mater. Res., 1996, vol. 32, pp. 409–17.

    Article  CAS  Google Scholar 

  13. A. Rakngarm, Y. Miyashita, and Y. Mutoh: J. Mater. Sci. Mater. Med., 2008, vol. 19, 1953–61.

    Article  CAS  Google Scholar 

  14. B. Yang, M. Uchida, H.-M. Kim, X. Zhang, and T. Kokubo: Biomaterials, 2004, vol. 25, pp. 1003–10.

    Article  CAS  Google Scholar 

  15. A. Arvidsson, V. Franke-Stenport, M. Andersson, P. Kjellin, Y.-T. Sul, and A. Wennerberg: J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 1945–54.

    Article  CAS  Google Scholar 

  16. Q. Tang, R. Brooks, N. Rushton, and S. Best: J. Mater. Sci. Mater. Med., DOI:10.1007/s10856-009-3841-y.

  17. M.A. Lopez-Heredia, P. Weiss, and P. Layrolle: J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 381–90.

    Article  CAS  Google Scholar 

  18. P. Habibovic, F. Barrère, C.A. Van Blitterswijk, K. De Groot, and P. Layrolle: J. Am. Ceram. Soc., 2002, vol. 85, pp. 517–22.

    Article  CAS  Google Scholar 

  19. K. De Groot, R. Geesink, C.P. Klein, and P. Serekian: J. Biomed. Mater. Res., 1987, vol. 21, pp. 1375–81.

    Article  Google Scholar 

  20. Y.C. Tsui, C. Doyle, and T.W. Clyne: Biomaterials, 1998, vol. 19, pp. 2015–29.

    Article  CAS  Google Scholar 

  21. Y.C. Tsui, C. Doyle, and T.W. Clyne: Biomaterials, 1998, vol. 19, pp. 2031–43.

    Article  CAS  Google Scholar 

  22. K.A. Gross and C.C. Berndt: J. Biomed. Mater. Res., 1998, vol. 39, pp. 580–87.

    Article  CAS  Google Scholar 

  23. Y.C. Yang and E. Chang: Biomaterials, 2001, vol. 22, pp. 1827–36.

    Article  CAS  Google Scholar 

  24. A. Tonino, C. Oosterbos, A. Rahmy, M. Therin, and C. Doyle: J. Bone Jt. Surg. Am., 2001, vol. 83, pp. 817–25.

    Google Scholar 

  25. S. Ono, A. Kiyotake, and H. Asoh: ECS Trans., 2008, vol. 11, pp. 1–8.

    Article  CAS  Google Scholar 

  26. H. Tsuchiya, J.M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen, and P. Schmuki: J. Biomed. Mater. Res., 2006, vol. 77A, pp. 534–41.

    Article  CAS  Google Scholar 

  27. S. Bauer, S. Kleber, and P. Schmuki: Electrochem. Commun., 2006, vol. 8, pp. 1321–24.

    Article  CAS  Google Scholar 

  28. A. Ghicov, H. Tsuchiya, J.M. Macak and P. Schmuki: Electrochem. Commun., 2005, vol. 7, pp. 505–08.

    Article  CAS  Google Scholar 

  29. J. Tao, J. Zhao, C. Tang, Y. Kang, and Y. Li: New J. Chem., 2008, vol. 32, pp. 2164–68.

    Article  CAS  Google Scholar 

  30. J. Kunze, L. Müller, J.M. Macak, P. Greil, P. Schmuki, and F.A. Müller: Electrochim. Acta, 2008, vol. 53, pp. 6995–7003.

    Article  CAS  Google Scholar 

  31. J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. Von Der Mark, and P. Schmuki: Small, 2009, vol. 5, pp. 666–71.

    Article  CAS  Google Scholar 

  32. K. Das, A. Bandyopadhyay, and S. Bose: J. Am. Ceram. Soc., 2008, vol. 91, pp. 2808–14.

    Article  CAS  Google Scholar 

  33. J. Park, S. Bauer, K. Von Der Mark, and P. Schmuki: Nano Lett., 2007, vol. 7, pp. 1686–91.

    Article  CAS  Google Scholar 

  34. X. Xiao, T. Tian, R. Liu, and H. She: Mater. Chem. Phys., 2007, vol. 106, pp. 27–32.

    Article  CAS  Google Scholar 

  35. B. Feng, X. Chu, J. Chen, J. Wang, X. Lu, and J. Weng: J. Porous Mater., DOI:10.1007/s10934-009-9307-2.

  36. H.B. Wen, Q. Liu, J.R. De Wijn, K. De Groot, and F.Z. Cui: J. Mater. Sci. Mater. Med., 1998, vol. 9, pp. 121–28.

    Article  CAS  Google Scholar 

  37. T. Kokubo and H. Takadama: Biomaterials, 2006, vol. 27, pp. 2907–15.

    Article  CAS  Google Scholar 

  38. H.-M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura: J. Biomed. Mater. Res. Appl. Biomater., 1997, vol. 38, pp. 121–27.

    Article  CAS  Google Scholar 

  39. M. Uchida, H.-M. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura: J. Biomed. Mater. Res., 2003, vol. 64A, pp. 164–70.

    Article  CAS  Google Scholar 

  40. D.K. Pattanayak, T. Kawai, T. Matsushita, H. Takadama, T. Nakamura, and T. Kokubo: J. Mater. Sci. Mater. Med., 2009, vol. 20, pp. 2401–11.

    Article  CAS  Google Scholar 

  41. R. Horváthová, L. Müller, A. Helebrant, P. Greil, and F.A. Müller: Mater. Sci. Eng. C, 2008, vol. 28, pp. 1414–19.

    Article  Google Scholar 

  42. C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug: Mater. Sci. Eng. C, 2007, vol. 27, pp. 198–205.

    Article  CAS  Google Scholar 

  43. “Implants for surgery-hydroxyapatite-part 2: Coating of hydroxyapatite,” ISO 13779-2 2008, second edition.

  44. A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, and P. Schmuki: Acta Biomater., 2009, vol. 5, pp. 2322–30.

    Article  CAS  Google Scholar 

  45. E. Landi, G. Celotti, G.. Loggroscino, and A.J. Tampieri: J. Euro. Ceram. Soc., 2003, vol. 23, pp. 2931–37.

    Article  CAS  Google Scholar 

  46. I.R. Gibson and W. Bonfield: J. Biomed. Mater. Res., 2002, vol. 59, pp. 697–708.

    Article  CAS  Google Scholar 

  47. S.M. Barinov, J.V. Rau, S. Nunziante Cesaro, J. Ďurišin, I.V. Fadeeva, D. Ferro, L. Medvecky, and G. Trionfetti: J. Mater. Sci. Mater. Med., 2006, vol. 17, pp. 597–604.

    Article  CAS  Google Scholar 

  48. T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo: J. Biomed. Mater. Res., 1985, vol. 19, pp. 685–98.

    Article  CAS  Google Scholar 

  49. K. Duan, A. Tang, and R. Wang: Mater. Sci. Eng. C, 2009, vol. 29, pp. 1334–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada. One of the authors (LW) thanks Dr. Xinhu Tang for the valuable discussion of the nanotube growth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-li Luo.

Additional information

Manuscript submitted March 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Ln., Luo, Jl. Formation of Hydroxyapatite Coating on Anodic Titanium Dioxide Nanotubes via an Efficient Dipping Treatment. Metall Mater Trans A 42, 3255–3264 (2011). https://doi.org/10.1007/s11661-010-0484-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0484-z

Keywords

Navigation