Skip to main content
Log in

Role of Slip Mode on Stress Corrosion Cracking Behavior

  • Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, we examine the effect of aging treatment and the role of planarity of slip on stress corrosion cracking (SCC) behavior in precipitation-hardened alloys. With aging, the slip mode can change from a planar slip in the underage (UA) to a wavy slip in the overage (OA) region. This, in turn, results in sharpening the crack tip in the UA compared to blunting in the OA condition. We propose that the planar slip enhances the stress concentration effects by making the alloys more susceptible to SCC. In addition, the planarity of slip enhances plateau velocities, reduces thresholds for SCC, and reduces component life. We show that the effect of slip planarity is somewhat similar to the effects of mechanically induced stress concentrations such as due to the presence of sharp notches. Aging treatment also causes variations in the matrix and grain boundary (GB) microstructures, along with typical mechanical and SCC properties. These properties include yield stress, work hardening rate, fracture toughness K IC , thresholds K Iscc, and steady-state plateau velocity (da/dt). The SCC data for a wide range of ductile alloys including 7050, 7075, 5083, 5456 Al, MAR M steels, and solid solution copper-base alloys are collected from the literature. Our assertion is that slip mode and the resulting stress concentration are important factors in SCC behavior. This is further supported by similar observations in many other systems including some steels, Al alloys, and Cu alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.O. Sprowls and R.H. Brown: Fundamental Aspects of Stress Corrosion Cracking, NACE, Houston, TX, 1969, pp. 466–512.

    Google Scholar 

  2. M.O. Speidel and M.V. Hyatt: Advances in Corrosion Science and Technology, Plenum Press, New York, NY, 1972, vol. 2, pp. 115–335.

    Google Scholar 

  3. N.J.H. Holroyd: EICM Proc., NACE-10, NACE, Houston, TX, 1971, pp. 311–45.

    Google Scholar 

  4. N.J.H. Holroyd, L. Christodoulou, and A.K. Vasudevan: in Aluminum and Its Applications, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, New York, NY, 1987, pp. 463–81.

  5. ASM Handbook, vol. 13A, Corrosion: Fundamentals, Testing and Protection, ASM INTERNATIONAL, Materials Park, OH, 2003.

  6. A.K. Vasudevan and R.D. Doherty: Treatise Mater. Res. Technol., Academic Press, New York, NY, 1989, vol. 31.

  7. R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA 1981, pp. 677–89.

    Google Scholar 

  8. R.P. Gangloff: in Compressive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier, New York, NY, 2003, pp. 1–194.

    Google Scholar 

  9. R.H. Jones: Stress Corrosion Cracking, ASM INTERNATIONAL, Metals Park, OH, 1992.

    Google Scholar 

  10. F.S. Bovard: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 2005.

    Google Scholar 

  11. L. Young: Ph.D. Thesis, University of Virginia, Charleston, VA, 1999.

  12. D.P. Dautovich and S. Floreen: Stress Corrosion and Hydrogen Embrittlement in Iron Base Alloys, NACE-5, NACE, Houston, TX, 1973, pp. 798–815.

    Google Scholar 

  13. C.S. Carter: Metall. Trans., 1970, vol. 1, pp. 1551–59.

    Article  CAS  Google Scholar 

  14. C.S. Carter: Metall. Trans., 1971, vol. 2, pp. 1621–26.

    CAS  Google Scholar 

  15. R. Goswami: NRL Laboratory Data, NRL Laboratory, Washington, DC, unpublished research, 2009.

  16. R.H. Jones, D.R. Baer, M.J. Danielson, J.S. Vetrano, and C.F. Windisch, Jr.: in Chemistry and Electrochemistry of Stress Corrosion Cracking: A Symp. Honoring the Contribution of R.W. Staehle, R.H. Jones, ed., TMS, Warrendale, PA, 2001, pp. 583–94.

  17. R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1699–711.

    Article  CAS  Google Scholar 

  18. D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Final Report Part I: Evaluation of SCC Susceptibility Using Fracture Mechanics Techniques,” Contract NAS 8-21487, G.C. Marshall Space Center, Huntsville, AL, May 31, 1973.

  19. F.S. Bovard: in Corrosion in Marine and Saltwater Environments II, Electrochemical Society Proc., D.A. Shifler, T. Tsuru, P.M. Natishan, and S. Ito, eds., Electrochemical Society, Pennington, NJ, 2005, vol. 2004-14, pp. 232–43.

  20. D.J. Quesnel, Y. Zhang, and Q. Wan: Metall. Mater. Trans. A, in press.

  21. M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–50.

    CAS  Google Scholar 

  22. P.K. Poulose, J.E. Morall, and A.J. McEvily: Metall. Trans., 1974, vol. 5, pp. 1393–400.

    Article  CAS  Google Scholar 

  23. J.K. Park and A.J. Ardell: Metall. Trans. A, 1984, vol. 15A, pp. 1531–43.

    CAS  Google Scholar 

  24. J.K. Park: Mater. Sci. Eng., 1988, vol. A103, pp. 223–31.

    CAS  Google Scholar 

  25. T. Ashai, F. Yabusaki, K. Osamura, and Y. Murakami: Proc. 6th Int. Conf. on Light Metals, Leoben, Vienna, 1975, pp. 64–67.

    Google Scholar 

  26. G.M. Scamans: Scripta Metall., 1979, vol. 13, pp. 245–50.

    Article  CAS  Google Scholar 

  27. P.R. Swann: Corrosion, 1963, vol. 19, pp. 102–12.

    Google Scholar 

  28. P.R. Swann and J.D. Embury: High Strength Materials, Wiley, New York, NY, 1965, pp. 327–62.

    Google Scholar 

  29. C. Edelneanu: JISI, 1953, vol. 175, pp. 390–92.

    Google Scholar 

  30. D.I. Douglas, G. Thomas, and W.R. Roser: Corrosion, 1964, vol. 20, pp. 54–61.

    Google Scholar 

  31. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1986, vol. 11, p. 221.

  32. G. Edmunds: Symp. on Stress Corrosion Cracking of Metals, ASTM-AIME, 1945, pp. 67–89.

  33. E.N. Pugh, J.V. Craig, and A.J. Sedriks: Proc. Fundamentals of Stress Corrosion Cracking, NACE, Houston, TX, 1969, pp. 118–58.

  34. A.J. McEvily and A.P. Bond: J. Electrochem. Soc., 1965, vol. 112, pp. 113–38.

    Article  Google Scholar 

  35. W. Rostoker, J.M. McCaughey, and H. Markus: Embrittlement by Liquid Metals, Reinhold Publishing Co., New York, NY, 1960, ch. 5.

  36. S. Lynch: Acta Metall., 1988, vol. 36 (10), pp. 2639–61.

    Article  CAS  Google Scholar 

  37. Y. Horse and T. Mura: Eng. Fract. Mech., 1984, vol. 19, pp. 317–29.

    Article  Google Scholar 

  38. M.C. Reboul, T. Magnin, and T.J. Warner: in Proc. 3rd Int. Conf. on Aluminum Alloys, Trondheim, Norway, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., 1992, pp. 453–60.

  39. G.A. Young and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 101–15.

    Article  CAS  Google Scholar 

  40. S. Knight: Ph.D. Thesis, Monash Univ., Melbourne, Australia, 2008.

  41. R.C. Newman and R.P.M. Proctor: Br. Corr. J., 1990, vol. 25 (4), pp. 259–69.

    CAS  Google Scholar 

  42. R.C. Newman: in Corrosion Mechanisms in Theory and Practice, P. Marcus and J. Oudar, eds., Marcel Dekker, Inc., New York, NY, 1995, pp. 311–72.

    Google Scholar 

  43. K. Sadananda and A.K. Vasudevan: Metall. Mater. Trans. A, DOI:10.1007/s11661-010-0472-3.

  44. D. Kujawski and K. Sadananda: Metall. Mater. Trans. A, DOI:10.1007/s11661-010-0373-5.

  45. T.P. Hoar: 2nd Int. Congr. on Metallic Corrosion, NACE, Houston, TX, 1953, pp. 14–22.

    Google Scholar 

  46. L. Graf: 2nd Int. Congr. on Metallic Corrosion, NACE, Houston, TX, 1953, pp. 89–97.

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Kujawski, Western Michigan University, for critically reading the manuscript, and Dr. Goswami, NRL Laboratory, for parting with the TEM and SEM of his work. The majority of the literature data was collected at the NRL/NIST libraries over a period of 10 years by both authors. The analysis was done with ONR-ROPO (AKV). KS acknowledges the support received from TDA and the U.S. Navy (NAVAIR) under Contract No. N00421-09-C-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vasudevan.

Additional information

Manuscript submitted: February 12, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, A.K., Sadananda, K. Role of Slip Mode on Stress Corrosion Cracking Behavior. Metall Mater Trans A 42, 405–414 (2011). https://doi.org/10.1007/s11661-010-0471-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0471-4

Keywords

Navigation