Skip to main content
Log in

Microstructural Characterization of Nanosized Ceria Powders by X-Ray Diffraction Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Spherically shaped nanocrystalline ceria powders were prepared by high energy ball milling (HEBM) of plate-shaped as-received ceria powders. Rietveld analysis was used to determine the surface weighted average crystallite size, lattice parameter, and lattice strain. The classical Williamson–Hall as well as modified Williamson–Hall method was used to determine the volume weighted average crystallite size. A comparison of the crystallite size obtained by the classical as well as modified Williamson–Hall method shows that the strain anisotropy consideration in the modified Williamson–Hall method yields a lower value of the crystallite size, and this difference becomes more pronounced with the increase in milling time. The modified Williamson–Hall method indicates that the dislocations present in the ceria powders are edge in character. The ceria powders also were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. ZETATRAC is a trademark of Microtrac Inc, Montgomeryville, PA.

References

  1. J. Sergeant and A. Bakhshai: The National Conference On Undergraduate Research, University of North Carolina Ashville, Ashville, NCUR, NC, 2006, April 6–8, pp. 1–8.

  2. W. Zhu, O.K. Tan, and J.Z. Jiang: J. Mater. Sci.: Mater. Electron., 1998, vol. 9, pp. 275–78.

    Article  Google Scholar 

  3. W. Cao, O.K. Tan, W. Zhu, B. Jiang, and C.V. Gopal Reddy: Sensors Actuat. B, 2001, vol. 77, pp. 421–26.

    Article  Google Scholar 

  4. O.K. Tan, W. Cao, W. Zhu, J.W. Chai, and J.S. Pan: Sensors Actuat. B, 2003, vol. 93, pp. 396–401.

    Article  Google Scholar 

  5. C.V.G. Reddy, W. Cao, O.K. Tan, W. Zhu, and S.A. Akbar: Sensors Actuat. B, 2003, vol. 94, pp. 99-102.

    Article  Google Scholar 

  6. L.B. Kong, W. Zhu, and O.K. Tan: Mater. Lett., 2000, vol. 42, pp. 232–39.

    Article  CAS  Google Scholar 

  7. Y. Hu, O.K. Tan, J.S. Pan, and X. Yao: J. Phys. Chem. B, 2004, vol. 108, pp. 11214–11218.

    Article  CAS  Google Scholar 

  8. Y. Kanno: Powder Technol., 1985, vol. 44, pp. 93–97.

    Article  CAS  Google Scholar 

  9. S. Coste, G. Bertrand, C. Coddet, E. Gaffet, H. Hahn, and H. Sieger: J. Alloys Compd., 2007, vol. 434, pp. 489–92.

    Article  Google Scholar 

  10. T.G. Durai, K. Das, and S. Das: J. Alloys. Compd., 2008, vol. 457, pp. 435–39.

    Article  CAS  Google Scholar 

  11. S.-S. Liu, L.-X. Sun, Y. Zhang, F. Xu, J. Zhang, H.-L. Chu, M.-Q. Fan, T. Zhang, X.-Y. Song, and J.P. Grolier: I. J. Hydro. Energy, 2009, vol. 34, pp. 8079–85.

    Article  CAS  Google Scholar 

  12. A.K. Nath, C. Jiten, and K.C. Singh: Physica B, 2010, vol. 405, pp. 430–34.

    Article  CAS  Google Scholar 

  13. N.S. Qu, D. Zhu, and K.C. Chan: Scripta Mater., 2006, vol. 54, pp. 1421–25.

    Article  CAS  Google Scholar 

  14. R. Sen, A. Sharma, S. Bhattacharya, S. Das, and K. Das: J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 4998–5003.

    Article  CAS  Google Scholar 

  15. R. Sen, S. Bhattacharya, S. Das, and K. Das: J. Alloys Compd., 2010, vol. 489, pp. 650–58.

    Article  CAS  Google Scholar 

  16. L. Lutterotti and P. Scardi: J. Appl. Cryst., 1990, vol. 23, pp. 246–52.

    Article  CAS  Google Scholar 

  17. T. Ungar, S. Ott, P.G. Sanders, A. Borbealy, and J.R. Weertman: Acta Mater., 1998, vol. 46, pp. 3693–99.

    Article  CAS  Google Scholar 

  18. T. Ungar, I. Dragomir, A. Revesz, and A. Borbely: J. Appl. Cryst., 1999, vol. 32, pp. 992–1002.

    Article  CAS  Google Scholar 

  19. J. Gubicza, G. Ribarik, G.R. Goren-Muginstein, A.R. Rosen, and T. Ungar: Mater. Sci. Eng. A, 2001, vol. 309, pp. 60–63.

    Article  Google Scholar 

  20. T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.

    Article  CAS  Google Scholar 

  21. V. Kanchana, G. Vaitheeswaran, A. Svane, and A. Delin: J. Phys. Condens. Matter., 2006, vol. 18, pp. 9615–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support received from the Indian Rare Earths Ltd. Research Centre to carry out a part of this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Das.

Additional information

Manuscript submitted April 13, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, R., Das, S. & Das, K. Microstructural Characterization of Nanosized Ceria Powders by X-Ray Diffraction Analysis. Metall Mater Trans A 42, 1409–1417 (2011). https://doi.org/10.1007/s11661-010-0463-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0463-4

Keywords

Navigation