Metallurgical and Materials Transactions A

, Volume 42, Issue 2, pp 340–347 | Cite as

A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Abstract

Strengthening and embrittlement are controlled by the interactions between dislocations and hydrogen (H)–induced defect structures that can inversely affect the deformation mechanisms in materials. Here we present a simulation framework to understand fundamental issues associated with H-assisted dislocation nucleation and mobility using Monte Carlo (MC) and molecular dynamics (MD). In order to study the interaction between H and dislocations and its effect on material failure, we extensively examined mode I loading of an edge crack using MD simulations. The MD calculations of the total structural energy in the nickel (Ni)–H system shows that H atoms prefer to occupy octahedral interstitial sites in the fcc Ni lattice. As H concentration is increased, the Young’s modulus and the energy required to create free surface decreased, resulting in H-enhanced localized plasticity. The MD simulations also indicate that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility, leading to softening of the material ahead of the crack tip. While the decrease in surface energy suggests H embrittlement, the increase in local plasticity induces crack blunting and prohibits crack propagation. The mechanisms responsible for transitioning from a ductile to brittle crack behavior clearly depend on the H concentration and its proximity to the crack tip. Enhanced plasticity will occur within a general field of H atoms that results in lower stacking fault and surface energies, yet H interstitials on preferential slip planes can inhibit dislocation nucleation.

References

  1. 1.
    S.P. Lynch: Scripta Metall., 1979, vol. 13, pp. 1051–56.CrossRefGoogle Scholar
  2. 2.
    S.P. Lynch: J. Mater. Sci., 1986, vol. 21, pp. 692–704CrossRefGoogle Scholar
  3. 3.
    H. Vehoff and W. Rothe: Acta Metall., 1983, vol. 31, pp. 1781–93.CrossRefGoogle Scholar
  4. 4.
    H. Vehoff and H.K. Klameth: Acta Metall., 1985, vol. 33, pp. 955–62CrossRefGoogle Scholar
  5. 5.
    J.W. Davenport and P.H. Estrup: in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodruff, eds., Elsevier, Amsterdam, 1990, vol. 3 (1), pp. 1–37.Google Scholar
  6. 6.
    J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.Google Scholar
  7. 7.
    H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A–Struct., 1994, vol. 176, pp. 191–202.CrossRefGoogle Scholar
  8. 8.
    P. Sofronis, Y. Liang, and N. Aravas: Eur. J. Mech. A/Solids, 2001, vol. 20, pp. 857–72.CrossRefGoogle Scholar
  9. 9.
    Y. Liang and P. Sofronis: J. Mech. Phys. Solids, 2003, vol. 51 (8), pp. 1509–31.CrossRefGoogle Scholar
  10. 10.
    I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92.CrossRefGoogle Scholar
  11. 11.
    I.M. Robertson and H.K. Birnbaum: Acta Metall., 1986, vol. 34, pp. 353–66.CrossRefGoogle Scholar
  12. 12.
    I.L. Kwon and R.J. Asaro: Acta Metall. Mater., 1980, vol. 38 (8), pp. 1595–1606.Google Scholar
  13. 13.
    D.S. Shih, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 111–24.CrossRefGoogle Scholar
  14. 14.
    P. Sofronis and H.K. Birnbaum: J. Mech. Phys. Solids, 1995, vol. 43, pp. 49–90.CrossRefGoogle Scholar
  15. 15.
    Y. Liang, P. Sofronis, and N. Aravas: Acta Mater., 2003, vol. 51, pp. 2717–30.CrossRefGoogle Scholar
  16. 16.
    Y. Liang, P. Sofronis, and R. Dodds: Mater. Sci. Eng. A, 2004, vol. 366 (2), pp. 397–411.CrossRefGoogle Scholar
  17. 17.
    H. Kimura and H. Matsui: Proc. 3rd Int. Conf. on Effect of Hydrogen on Behavior of Materials, TMS-AIME, Warrendale, PA, 1980, pp. 191–208.Google Scholar
  18. 18.
    K.S. Shin, C.G. Park, and M. Meshii: Proc. 3rd Int. Conf. on Effect of Hydrogen on Behavior of Materials, TMS-AIME, Warrendale, PA, 1980, pp. 209–18.Google Scholar
  19. 19.
    P. Sofronis and J. Lufrano: Mater. Sci. Eng. A, 1999, vol. 260 (1), pp. 41–47(7)Google Scholar
  20. 20.
    J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1996, vol. 44 (2), pp. 179–205.CrossRefGoogle Scholar
  21. 21.
    T. Tabata and H.K. Birnbaum: Scripta Metall., 1983, vol. 17, pp. 947–50.CrossRefGoogle Scholar
  22. 22.
    T. Tabata and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 231–36.CrossRefGoogle Scholar
  23. 23.
    Y. Liang and P. Sofronis: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 523–51.CrossRefGoogle Scholar
  24. 24.
    G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–96.CrossRefGoogle Scholar
  25. 25.
    G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 2193–97.CrossRefGoogle Scholar
  26. 26.
    P. Rozenak, I.M. Robertson, and H.K. Birnbaum: Acta Metall. Mater., 1990, vol. 38, pp. 2031–40.CrossRefGoogle Scholar
  27. 27.
    A. Kimura and H.K. Birnbaum: Acta Metall., 1988, vol. 36 (3), pp. 757–66.CrossRefGoogle Scholar
  28. 28.
    M.R. Louthan, G.R. Caskey, Jr., J.A. Donovan, Jr., and D.E. Rawl, Jr.: Mater. Sci. Eng., ASM, Metals Park, OH, 1972, vol. 10 (6), pp. 357–68.Google Scholar
  29. 29.
    R.A. Oriani: Acta Metall., 1970, vol. 18 (1), pp. 147–57.CrossRefGoogle Scholar
  30. 30.
    R.A. Oriani and P.H. Josephic: Acta Metall., 1979, vol. 27 (6), pp. 997–1005.CrossRefGoogle Scholar
  31. 31.
    T.D. Lee, T. Goldenberg, and J.P. Hirth: Metall. Trans. A, 1979, vol. 10A, pp. 199–208.Google Scholar
  32. 32.
    A.W. Thompson: Scripta Metall., 1982, vol. 16 (10), pp. 1189–92.CrossRefGoogle Scholar
  33. 33.
    C.P. You, A.W. Thompson, and I.M. Bernstein: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 407–15.CrossRefGoogle Scholar
  34. 34.
    D.J. Bammann, P. Sofronis, and P. Novak: 2005 Proc. Int. Conf. on Fracture, Turin, Italy, 2005, p. 577.Google Scholar
  35. 35.
    A. Ramasubramaniam, M. Itakura, and E.A. Carter: Phys. Rev. B, 2009, vol. 79, p. 174101CrossRefGoogle Scholar
  36. 36.
    X. Xu, M. Wen, Z. Hu, S. Fukuyama, and K. Yokogawa: Comput. Mater. Sci., 2003, vol. 23, pp. 131–38.CrossRefGoogle Scholar
  37. 37.
    M.Q. Chandler, M.F. Horstemeyer, M.I. Baskes, P.M. Gullett, G.J. Wagner, and B. Jelinek: Acta Mater., 2008, vol. 56, pp. 95–104CrossRefGoogle Scholar
  38. 38.
    M.Q. Chandler, M.F. Horstemeyer, M.I. Baskes, G.J. Wanger, P.M. Gullett, and B. Jelinek: Acta Mater., 2008, vol. 56, pp. 619–31CrossRefGoogle Scholar
  39. 39.
    V.V. Bulatov and E. Kaxiras: Phys. Rev. Lett., 1997, vol. 78, pp. 4221–24.CrossRefGoogle Scholar
  40. 40.
    K.N. Solanki, M.F. Horstemeyer, M.I. Baskes, and H. Fang: Mech. Mater., 2005, vol. 37 (2–3), pp. 317–30.CrossRefGoogle Scholar
  41. 41.
    M.F. Horstemeyer, M.I. Baskes, V.C. Prantil, J. Philliber, and S. Vonderheide: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 265–86.CrossRefGoogle Scholar
  42. 42.
    S. Plimpton: J. Comp. Phys., 1995, vol. 117, pp. 1–19.CrossRefGoogle Scholar
  43. 43.
    M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285–88.CrossRefGoogle Scholar
  44. 44.
    S.M. Foiles, M.S. Daw, and W.D. Wilson: TMS-AIME, 1984, p. 275.Google Scholar
  45. 45.
    J.E. Angelo, N.R. Moody, and M.I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.CrossRefGoogle Scholar
  46. 46.
    G.W. Hoover: Phys. Rev. A, 1985, vol. 31, pp. 1695–97.CrossRefGoogle Scholar
  47. 47.
    G.W. Hoover: Phys. Rev. A, 1986, vol. 34, pp. 2499–500.CrossRefGoogle Scholar
  48. 48.
    L. Verlet: Phys. Rev., 1967, vol. 159, pp. 98–103.CrossRefGoogle Scholar
  49. 49.
    S.C. Chang and J.P. Hirth: Metall. Trans. A, 1985, vol. 26A, pp. 1417–25.Google Scholar
  50. 50.
    H. Fang, M.F. Horstemeyer, M.I. Baskes, and K.N. Solanki: Comput. Meth. Appl. Mech. Eng., 2004, vol. 193 (17–20), pp. 1789–1802.CrossRefGoogle Scholar
  51. 51.
    V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater., 2001, vol. 49, pp. 2713–22.CrossRefGoogle Scholar
  52. 52.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nat. Mater., 2002, vol. 1, p. 45.CrossRefGoogle Scholar
  53. 53.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2003, vol. 51, pp. 4135–47.CrossRefGoogle Scholar
  54. 54.
    C.L. Kelchner, S. Plimpton, J. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085–88.CrossRefGoogle Scholar
  55. 55.
    J.R. Rice: J. Mech. Phys. Solids, 1978, vol. 26, pp. 61–78.CrossRefGoogle Scholar
  56. 56.
    D.K. Ward, W.A. Curtin, and Y. Qi: Comp. Sci. Technol., 2006, vol. 66, pp. 1151–61.CrossRefGoogle Scholar
  57. 57.
    M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–53.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Center for Advanced Vehicular SystemsStarkvilleUSA
  2. 2.Mechanical Engineering DepartmentMississippi State UniversityMississippi StateUSA

Personalised recommendations