Skip to main content
Log in

Aluminum Alloys with Identical Plastic Flow and Different Strain Rate Sensitivity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mg-rich and Si-rich aluminum alloys from the AA6XXX class are considered to demonstrate that standard heat treatments can be used to produce materials with identical plastic flow (yield stress and strain hardening) and different strain rate sensitivity. The Mg-rich alloy exhibits lower strain rate sensitivity and a different variation of this parameter with the stress (Haasen plot) relative to the Si-rich alloy. This is due to the instantaneous component of the strain rate sensitivity being smaller in the Mg-rich alloy. Hence, the underlying mechanism is not related to the presence of free, fast diffusing Mg atoms, but rather to the different nature of precipitates forming in the two alloys. A simple model is used to demonstrate that it is possible to tailor the strain rate sensitivity while preserving the flow stress by controlling the nature of precipitates and that of the dislocation-precipitate interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.C. Parson and H.L. Yiu: in Light Metals, P.G. Campbell, ed., TMS, Warrendale, PA, 1989, pp. 713–24.

  2. Materials Science and Technology—A Comprehensive Treatise, E.G.H. Mughrabi, ed., VCH, New York, NY, 1993, vol. 6.

  3. Z. Xu and R.C. Picu: Phys. Rev. B, 2007, vol. 76, p. 094112.

  4. R.C. Picu, R. Li, and Z. Xu: Mater. Sci. Eng. A, 2009, vol. 502, pp. 164–71.

    Article  Google Scholar 

  5. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2003, vol. 51, pp. 789–96.

    Article  CAS  Google Scholar 

  6. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–3904.

    Article  CAS  Google Scholar 

  7. M.A. van Huis, J.H. Chen, H.W. Zandbergen, and M.H.F. Sluiter: Acta Mater., 2006, vol. 54, pp. 2945–55.

    Article  Google Scholar 

  8. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen: Acta Mater., 2007, vol. 55, pp. 3815–23.

    Article  CAS  Google Scholar 

  9. C.D. Marioara, H. Nordmark, S.J. Andersen, and R. Holmestad: J. Mater. Sci., 2006, vol. 41, pp. 471–78.

    Article  CAS  ADS  Google Scholar 

  10. C. Ravi and C. Wolverton: Acta Mater., 2004, vol. 52, pp. 4213–27.

    Article  CAS  Google Scholar 

  11. R.S. Yassar, D.P. Field, and H. Weiland: J. Mater. Res., 2005, vol. 20, pp. 2705–11.

    Article  CAS  ADS  Google Scholar 

  12. R. Ramachandran, K. Jung, J. Narayan, and H. Conrad: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 693–97.

    Google Scholar 

  13. S.J. Andersen, H.W. Zandberg, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso: Acta Mater., 1998, vol. 46, pp. 3283–98.

    Article  CAS  Google Scholar 

  14. A. Kelly and R.B. Nicholson: Prog. Mater. Sci., 1963, vol. 10, p. 151.

    Article  Google Scholar 

  15. R.C. Picu and Z. Xu: Scripta Mater., 2007, vol. 57, pp. 45–48.

    Article  CAS  Google Scholar 

  16. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2001, vol. 49, pp. 321–28.

    Article  CAS  Google Scholar 

  17. K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1161–67.

    Article  CAS  Google Scholar 

  18. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. van Helvoort, and R. Holmstead: Phil. Mag., 2007, vol. 87, pp. 3385–3413.

    Article  CAS  ADS  Google Scholar 

  19. C. Wolverton: Acta Mater., 2001, vol. 49, pp. 3129–42.

    Article  CAS  Google Scholar 

  20. S.E. Urreta, F. Louchet, and A. Ghilarducci: Mater. Sci. Eng. A, 2001, vol. 302, pp. 300–07.

    Article  Google Scholar 

  21. M. Vivas, P. Lours, C. Levaillant, A. Couret, M.-J. Casanove, and A. Coujou: Phil. Mag., 1997, vol. A76, pp. 921–34.

    ADS  Google Scholar 

  22. J.J. Gracio, F. Barlat, E.F. Rauch, P.T. Jones, V.F. Neto, and A.B. Lopes: Int. J. Plast., 2004, vol. 20, pp. 427–45.

    Article  MATH  CAS  Google Scholar 

  23. M. Johansson, M. Hornqvist, and B. Karlsson: Mater. Sci. Forum, 2006, vols. 519–521, pp. 841–46.

    Article  Google Scholar 

  24. U.F. Kocks: Proc. 5th Int. Conf. on the Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kastortz, eds., Pergamon, Oxford, United Kingdom, 1979, vol. 3.

  25. H. Mehrer: Diffusion in Solid Metals and Alloys, Springer, New York, NY, 1990, vol. 3.

  26. S.I. Fujikawa, K.I. Hirano, and Y. Fukushima: Metall. Trans. A, 1978, vol. 9A, pp. 1811–15.

    CAS  ADS  Google Scholar 

  27. R.C. Picu, G. Vincze, J.J. Gracio, and F. Barlat: Scripta Mater., 2006, vol. 54, pp. 71–75.

    Article  CAS  Google Scholar 

  28. J. Friedel: Dislocations, Addison-Wesley, Reading, MA, 1967.

    Google Scholar 

  29. S. Altintas and J.W. Morris: Acta Metall., 1986, vol. 34, pp. 809–17.

    Article  CAS  Google Scholar 

  30. A.J.E. Foreman and M.J. Makin: Phil. Mag., 1966, vol. 14, pp. 911–19.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Picu.

Additional information

Manuscript submitted November 26, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picu, R.C., Ozturk, F., Esener, E. et al. Aluminum Alloys with Identical Plastic Flow and Different Strain Rate Sensitivity. Metall Mater Trans A 41, 3358–3364 (2010). https://doi.org/10.1007/s11661-010-0423-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0423-z

Keywords

Navigation