Skip to main content
Log in

Experimental Investigation on the Rheological Behavior of Hypereutectic Al-Si Alloys by a Precise Rotational Viscometer

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Determining the viscosity of low solid volume fraction semisolid alloys is important for predicting the gradient of primary particles within functionally graded materials (FGMs), produced by in-situ casting processes. In this study, a new precise rotational viscometer was developed and used to measure the viscosity of Al-22 pct Si and Al-30 pct Si semisolid alloys up to solid volume fractions of 9 and 20 pct, respectively. Three kinds of typical curves, viscosity (η) vs solid volume fraction (f s ), shear time (t), and shear rate (\( \dot{\gamma } \)), were derived from the results of viscosity measurements for both Al-Si alloys. In the semisolid Al-Si alloys, thixotropic behavior was not detected at low solid volume fractions, but this behavior was obviously observed with increasing solid volume fraction and could be described by an analytical model. Finally, the results showed that the equilibrium viscosity of the semisolid alloys with thixotropic properties decreased by increasing shear rate according to the Ostwald–De Waele power law. A special test, developed in this research, was used to show the effect of agglomeration on the viscosity of the semisolid alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Kieback, A. Neubrand, and H. Riedel: Mater. Sci. Eng., 2003, vol. 362A, pp. 81–105.

    Google Scholar 

  2. G. Chirita, D. Soares, and F.S. Silva: Mater. Des., 2008, vol. 29, pp. 20–27.

    CAS  Google Scholar 

  3. C. Song, Z. Xu, and J. Li: Mater. Des., 2007, vol. 28, pp. 1012–15.

    CAS  Google Scholar 

  4. M. Gupta and C.Y. Loke: Mater. Sci. Eng., 2000, vol. 276A, pp. 210–17.

    Google Scholar 

  5. T. Ogawa, Y. Watanabe, H. Sato, I. Kim, and Y. Fukui: Composites Part A, 2006, vol. 37A, pp. 2194–2200.

    Article  CAS  Google Scholar 

  6. C. Song, Z. Xua, G. Liang, and J. Li: Mater. Sci. Eng., 2006, vol. 424A, pp. 6–16.

    Google Scholar 

  7. Y. Watanabea, N. Yamanakab, and Y. Fukui: Composites Part A, 1998, vol. 29A, pp. 595–601.

    Article  Google Scholar 

  8. A. Kolsgaard and S. Brusethaug: Mater. Sci. Eng., 1993, vol. 173A, pp. 213–19.

    Google Scholar 

  9. H.C. Brinkman: J. Chem. Phys., 1952, vol. 20, pp. 571–72.

    Article  CAS  ADS  Google Scholar 

  10. J.F. Richardson and W.N. Zaki: Trans. Inst. Chem. Eng., 1954, vol. 32, pp. 35–53.

    CAS  Google Scholar 

  11. M.C. Flemings: Metall. Trans. A, 1991, vol. 22A, pp. 957–81.

    CAS  ADS  Google Scholar 

  12. M. Hirai, K. Takebayashi, and Y. Yoshikawa: ISIJ Int., 1993, vol. 33, pp. 1182–89.

    Article  Google Scholar 

  13. M. Mada and F. Ajersch: Mater. Sci. Eng., 1996, vol. 212A, pp. 157–70.

    Google Scholar 

  14. H.K. Moon, J.A. Cornie, and M.C. Flemings: Mater. Sci. Eng., 1991, vol. 144A, pp. 253–65.

    Google Scholar 

  15. W.R. Loue, S. Landkroon, and W.H. Kool: Mater. Sci. Eng., 1992, vol. 151A, pp. 255–62.

    Google Scholar 

  16. C.J. Quaak, M.G. Horsten, and W.H. Kool: Mater. Sci. Eng., 1994, vol. 183A, pp. 247–56.

    Google Scholar 

  17. D. Brabazon, D.J. Browne, and A.J. Carr: Mater. Sci. Eng., 2003, vol. 356A, pp. 69–80.

    Google Scholar 

  18. A.K. Dahle and D.H. StJohan: Acta Mater., 1999, vol. 47, pp. 31–41.

    Article  CAS  Google Scholar 

  19. P.A. Joly and R. Mehrabian: J. Mater. Sci., 1976, vol. 11, pp. 1393–1418.

    Article  CAS  ADS  Google Scholar 

  20. D. Wang and R.A. Overfelt: Int. J. Thermophys., 2002, vol. 23, pp. 1063–76.

    Article  CAS  Google Scholar 

  21. F.C.R. Hernandez, M.B. Djurdjevic, W.T. Kierkus, and J.H. Sokolowski: Mater. Sci. Eng., 2005, vol. 396A, pp. 271–76.

    Google Scholar 

  22. A.R.A. McLelland, N.G. Henderson, H.V. Atkinson, and D.H. Kirkwood: Mater. Sci. Eng., 1997, vol. 232A, pp. 110–18.

    Google Scholar 

  23. N. Apaydin, K.V. Prabhakar, and R.D. Doherty: Mater. Sci. Eng., 1980, vol. 46, pp. 145–50.

    Article  CAS  Google Scholar 

  24. C. Song, Z. Xu, and J. Li: Mater. Des., 2007, vol. 27, pp. 1012–15.

    Google Scholar 

  25. F. Jin, Z. Ren, W. Ren, K. Deng, Y. Zhong, and J. Yu: Sci. Technol. Adv. Mater., 2008, vol. 9, article number 024202.

  26. G. Chirita, I. Stefanescu, D. Cruz, D. Soares, and F.S. Silva: Mater. Des., 2010, vol. 31, pp. 2867–77.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Kayvan Sadeghy at the School of Mechanical Engineering, Faculty of Engineering, University of Tehran for his valuable assistance in the viscometer assembling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sohrabi Baba Heidary.

Additional information

Manuscript submitted March 17, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohrabi Baba Heidary, D., Akhlaghi, F. Experimental Investigation on the Rheological Behavior of Hypereutectic Al-Si Alloys by a Precise Rotational Viscometer. Metall Mater Trans A 41, 3435–3442 (2010). https://doi.org/10.1007/s11661-010-0420-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0420-2

Keywords

Navigation