Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

Abstract

An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa\( \sqrt {\text{m}} . \)

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    D.O. Sprowls: ASM Metal Handbook, 9th ed., B.J.R. Davis, J.D. Destefani, and G.M. Crankovic, eds., Metals Park, OH, 1987, vol. 13, pp. 245–82.

  2. 2.

    M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.

    CAS  Google Scholar 

  3. 3.

    M.O. Speidel: in The Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., North Atlantic Treaty Organization (NATO), Scientific Affairs Division, Brussels, 1971, pp. 289–344.

  4. 4.

    S.M. Lee, S.I. Pyun, and Y.G. Chun: Metall. Trans. A, 1991, vol. 22A, pp. 2407–14.

    CAS  Google Scholar 

  5. 5.

    K. Endo, K. Komai, and I. Yamamoto: Bull. Jpn. Soc. Mech. Eng., 1981, vol. 24 (194), pp. 1326–32.

    CAS  Google Scholar 

  6. 6.

    H.F. de Jong: Aluminium, 1982, vol. 58 (9), pp. 526–31.

    Google Scholar 

  7. 7.

    A.H. Le, B.F. Brown, and R.T. Foley: Corrosion, 1980, vol. 36 (12), pp. 673–79.

    CAS  Google Scholar 

  8. 8.

    A.H. Le and R.T. Foley: Corrosion, 1983, vol. 39 (10), pp. 379–83.

    CAS  Google Scholar 

  9. 9.

    Y. Miyagi and T. Eto: Kobe Res. Dev., 1986, vol. 36 (2), pp. 117–20.

    CAS  Google Scholar 

  10. 10.

    M. Baydogan, H. Cimenoglu, K.E. Sabri, and J. Rasty: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2470–76.

    CAS  Article  Google Scholar 

  11. 11.

    M.P. Mueller, A.W. Thompson, and I.M. Bernstein: Corrosion, 1985, vol. 41 (3), pp. 127–36.

    CAS  Google Scholar 

  12. 12.

    C.P. Ferrer, M.G. Koul, B.J. Connolly, and A.L. Moran: Corrosion, 2003, vol. 59 (6), pp. 520–28.

    CAS  Article  Google Scholar 

  13. 13.

    J.K. Park: Mater. Sci. Eng. A, 1988, vol. 103 (2), pp. 223–31.

    Article  Google Scholar 

  14. 14.

    K. Ural: J. Mater. Sci. Lett., 1994, vol. 13 (5), pp. 383–85.

    CAS  Article  Google Scholar 

  15. 15.

    Y. Reda, R. Abdel-Karim, and I. Elmahallawi: Mater. Sci. Eng. A, 2008, vol. 485 (1–2), pp. 468–75.

    Google Scholar 

  16. 16.

    M. Talianker and B. Cina: Metall. Trans. A, 1989, vol. 20A, pp. 2087–92.

    CAS  Google Scholar 

  17. 17.

    R.T. Holt, V.R. Parameswaran, and W. Wallace: Can. Aeronaut. Space J., 1996, vol. 42 (2), pp. 83–87.

    Google Scholar 

  18. 18.

    K. Rajan, W. Wallace, and J.C. Beddoes: J. Mater. Sci., 1982, vol. 17 (10), pp. 2817–24.

    CAS  Article  Google Scholar 

  19. 19.

    D. Li, J. Liu, P. Liu, G. Zhu, and B. Guo: Mater. Sci. Forum, 2002, vols. 396–402 (3), pp. 1497–1504.

  20. 20.

    D. Yan, Y. Zhang, H. Wang, and S. Wang: J. Mater. Eng., 1993, vol. 2, pp. 13–16.

    Google Scholar 

  21. 21.

    M. Hua, C. Li, and H. Wang: Acta Metall. Sinica, 1988, vol. 24 (1), pp. A41–A46.

    CAS  Article  Google Scholar 

  22. 22.

    T.M. Yue, L.J. Yan, C.F. Dong, and C.P. Chan: Mater. Sci. Technol., 2005, vol. 21 (8), pp. 961–66.

    CAS  Article  Google Scholar 

  23. 23.

    T.M. Yue, C.F. Dong, L.J. Yan, and H.C. Man: Mater. Lett., 2004, vol. 58 (5), pp. 630–35.

    CAS  Article  Google Scholar 

  24. 24.

    T.M. Yue, L.J. Yan, and C.P. Chan: Appl. Surf. Sci., 2006, vol. 252 (14), pp. 5026–34.

    CAS  Article  Google Scholar 

  25. 25.

    L.M. Wu, W.H. Wang, Y.F. Hsu, and S. Trong: Mater. Trans., 2007, vol. 48 (3), pp. 600–09.

    Article  Google Scholar 

  26. 26.

    W.Y. Chu, C.M. Hsiao, and J.W. Wang: Metall. Trans. A, 1985, vol. 16A, pp. 1663–70.

    CAS  Google Scholar 

  27. 27.

    A.H. Hanisch, L.H. Burck: Corrosion, 1982, vol. 38 (6), pp. 330–35.

    CAS  Google Scholar 

  28. 28.

    M.R. Chlistovsky, P.J. Heffernan, and D.L. DuQuesnay: Int. J. Fatigue, 2007, vol. 29 (9–11), pp. 1941–49.

    CAS  Article  Google Scholar 

  29. 29.

    R. Hermann: J. Mater. Sci., 1981, vol. 16 (9), pp. 2381–86.

    CAS  Article  Google Scholar 

  30. 30.

    W.G. Clark: ASTM STP 700, ASTM, Philadelphia, PA, 1980, pp. 97–111.

    Google Scholar 

  31. 31.

    M. Gaillard, M.M. Chouvy, and L.A. Blechet: Rev. Alum., 1982, vol. 513, pp. 30–35.

    CAS  Google Scholar 

  32. 32.

    D. Rhodes and J.C. Radon: Corr. Sci., 1981, vol. 21 (5), pp. 381–89.

    CAS  Article  Google Scholar 

  33. 33.

    H.P. Chu and G.A. Wacker: J. Basic Eng., 1969, vol. 91 (4), pp. 656–59.

    CAS  Google Scholar 

  34. 34.

    B.F. Brown: Mater. Res. Stand., 1966, vol. 6 (3), pp. 129–33.

    CAS  Google Scholar 

  35. 35.

    T. Saito and T. Tanaka: J. Jpn. Inst. Light Met., 1975, vol. 25 (6), pp. 214–22.

    Google Scholar 

  36. 36.

    R.C. Dorward and K.R. Hasse: Corros. Sci., 1982, vol. 22 (3), pp. 251–57.

    CAS  Article  Google Scholar 

  37. 37.

    T. Ohnishi, H. Kojima, N. Seko, and K. Higashi: J. Jpn. Inst. Light Met., 1985, vol. 35 (6), pp. 344–52.

    CAS  Google Scholar 

  38. 38.

    A.C. Fraker and J.R. Ruff, Jr.: Corros. Sci., 1970, vol. 10 (4), pp. 191–95.

    CAS  Article  Google Scholar 

  39. 39.

    D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques.” Pt. 1. Final Report, Contract NAS 8-21487, Contract Report NASA CR-124469, NASA, Washington, DC, May 1973.

  40. 40.

    R.C. Dorward and K.R. Hasse: Corrosion, 1978, vol. 34 (11), pp. 386–95.

    CAS  Google Scholar 

  41. 41.

    Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647-05, ASTM International, Philadelphia, PA.

  42. 42.

    B.W. Lifka: ASTM STP 425, ASTM, Philadelphia, PA, 1966, pp. 82–83.

    Google Scholar 

  43. 43.

    R.C. Dorward and K.R. Hasse: Corros. Sci., 1979, vol. 19 (2), pp. 131–40.

    CAS  Article  Google Scholar 

  44. 44.

    B.J. Connolly, M.G. Koul, and A.L. Moran: Corrosion 2003, NACE International, Houston, TX, 2003, paper no. 03515.

  45. 45.

    P. Martin, J.I. Dickson, and J.P. Bailon: Mater. Sci. Eng., 1985, vol. 69 (1), pp. L9–L13.

    CAS  Article  Google Scholar 

  46. 46.

    W.Y. Chu, C.M. Hsiao, and J.W. Wang: Metall. Trans. A, 1985, vol. 16A, pp. 1663–70.

    CAS  Google Scholar 

  47. 47.

    M.O. Speidel and M.V. Hyatt: in Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1972, vol. 2, pp. 115–335.

  48. 48.

    A. Hartman, J.W. Lievers, and W.J. Vandervet: Report No. NLR-TR-71090-U-PR-1, National Aerospace Laboratory, Amsterdam, Netherlands, Sept. 1971.

  49. 49.

    L.M. Young: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1999.

  50. 50.

    B.J. Connolly, M.G. Koul, and A.L. Moran: Corrosion, 2005, vol. 61 (10), pp. 976–86.

    CAS  Article  Google Scholar 

  51. 51.

    M. Landkof and L. Gal-or: Corrosion, 1980, vol. 36 (5), pp. 241–46.

    CAS  Google Scholar 

  52. 52.

    M.R. Bayoumi: Eng. Fract. Mech., 1996, vol. 54 (6), pp. 879–89.

    Article  Google Scholar 

  53. 53.

    N.J.H. Holroyd, A.K. Vasudevan, and L. Christodoulou: in Aluminum Alloys - Contemporary Research and Applications, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Inc., New York, NY, 1989, vol. 31, pp. 463–83.

  54. 54.

    S.X. Mao, B. Gu, N.Q. Wu, and L. Qiao: Phil. Mag. A, 2001, vol. 81A (7), pp. 1813–31.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Office of Naval Research (N00014-08-1-0646). The authors gratefully acknowledge the inspiring suggestions made by Dr. Asuri K. Vasudevan in the course of the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanyao Jiang.

Additional information

Manuscript submitted October 23, 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Kalnaus, S., Behrooz, M. et al. Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment. Metall Mater Trans A 42, 448–460 (2011). https://doi.org/10.1007/s11661-010-0419-8

Download citation

Keywords

  • Stress Intensity Factor
  • Crack Growth Rate
  • Fatigue Crack Growth
  • Stress Corrosion Crack
  • Transient Stage