Skip to main content
Log in

Dynamic Strain Aging in New Generation Cr-Mo-V Steel for Reactor Pressure Vessel Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new generation nuclear reactor pressure vessel steel (CrMoV type) having compositional similarities with thick section 3Cr-Mo class of low alloy steels and adapted for nuclear applications was investigated for various manifestations of dynamic strain aging (DSA) using uniaxial tests. The steel investigated herein has undergone quenched and tempered treatment such that a tempered bainite microstructure with Cr-rich carbides was formed. The scope of the uniaxial experiments included tensile tests over a temperature range of 298 K to 873 K (25 °C to 600 °C) at two strain rates (10−3 and 10−4 s−1), as well as suitably designed transient strain rate change tests. The flow behavior displayed serrated flow, negative strain rate sensitivity, plateau behavior of yield, negative temperature (T), and strain rate \( \left( {\dot{\varepsilon }} \right) \) dependence of flow stress over the temperature range of 523 K to 673 K (250 °C to 400 °C) and strain rate range of 5 × 10−3 s−1 to 3 × 10−6 s−1, respectively. While these trends attested to the presence of DSA, a lack of work hardening and near negligible impairment of ductility point to the fact that manifestations of embrittling features of DSA were significantly enervated in the new generation pressure vessel steel. In order to provide a mechanistic understanding of these unique combinations of manifestations of DSA in the steel, a new approach for evaluation of responsible solutes from strain rate change tests was adopted. From these experiments and calculation of activation energy by application of vacancy-based models, the solutes responsible for DSA were identified as carbon/nitrogen. The lack of embrittling features of DSA in the steel was rationalized as being due to the beneficial effects arising from the presence of dynamic recovery effects, presence of alloy carbides in the tempered bainitic structure, and formation of solute clusters, all of which hinder the possibilities for strong aging of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

  2. INSTRON is a trademark of Canton, Norwood, MA.

References

  1. K.L. Murty and C.S. Seok: JOM, 2001, vol. 6, pp. 23–26.

    Article  Google Scholar 

  2. C.L. Briant and S.K. Banerji: Int. Met. Rev., 1978, vol. 4, pp. 64–110.

    Google Scholar 

  3. R. Vishwanathan: Damage Mechanisms and Life Assessment in High Temperature Components, ASM INTERNATIONAL, Metals Park, OH, 1989.

    Google Scholar 

  4. Y. Estrin and L.P. Kubin: in Continuum Models for Materials with Microstructure, H.B. Mühlhaus, ed., John Wiley and Sons Ltd., New York, NY, 1995, pp. 395–402.

    Google Scholar 

  5. A. Wijler, J. Schade van Westrum, and A. van den Beukel: Acta Metall., 1972, vol. 20, pp. 355–65.

    Article  CAS  Google Scholar 

  6. R.A. Mulford and U.F. Kocks: Acta Metall., 1979, vol. 27, pp. 1125–34.

    Article  CAS  Google Scholar 

  7. J.C. Huang and G.T. Gray: Scripta Metall. Mater., 1990, vol. 24, pp. 85–90.

    Article  CAS  Google Scholar 

  8. B.J. Bindley and P.J. Worthington: Metall. Rev., 1970, vol. 15, pp. 101–14.

    Google Scholar 

  9. A.H. Cottrell: Trans. TMS-AIME, 1953, vol. 212, pp. 192–202.

    Google Scholar 

  10. L.P. Kubin and Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697–705.

    Article  CAS  Google Scholar 

  11. L.P. Kubin and Y. Estrin: Phys. Status Solidi (b), 1992, vol. 172, pp. 173–90.

    Article  CAS  ADS  Google Scholar 

  12. P. Hähner: Scripta Metall. Mater., 1993, vol. 29, pp. 1171–76.

    Article  Google Scholar 

  13. P. Hähner: Acta Mater., 1997, vol. 45, pp. 3695–3707.

    Article  Google Scholar 

  14. P. Hähner: Mater. Sci. Eng., 1996, vol. A207, pp. 208–15.

    Google Scholar 

  15. P. Hähner: Mater. Sci. Eng., 1996, vol. A207, pp. 216–23.

    Google Scholar 

  16. L.P. Kubin, K. Chibab, and Y. Estrin: Acta Metall., 1988, vol. 36, pp. 2707–15.

    Article  CAS  Google Scholar 

  17. S. Venugopal, P. Venugopal, and S.L. Mannan: J. Mater. Proc. Technol., 2008, vol. 202, pp. 201–15.

    Article  CAS  Google Scholar 

  18. M. Srinivas, G. Malkondiah, and P. Rama Rao: Acta Metall., 1993, vol. 41, pp. 1301–12.

    Article  CAS  Google Scholar 

  19. D. Delafosse, G. Lapasset, and L.P. Kubin: Scripta Metall. Mater., 1993, vol. 29, pp. 1379–83.

    Article  CAS  Google Scholar 

  20. M. Srinivas, G. Malkondiah, K.L. Murty, and P. Rama Rao: Scripta Metall. Mater., 1991, vol. 25, pp. 2585–88.

    Article  CAS  Google Scholar 

  21. A.F. Aramas, M. Avalos, I. Alvarez-Armas, C. Peterson, and R. Scmitt: J. Nucl. Mater., 1998, vols. 258–263 pp. 1204–14.

    Article  Google Scholar 

  22. K.G. Samuel, S.L. Mannan, and P. Rodriguez: Acta Metall., 1988, vol. 36, pp. 2323–27.

    Article  CAS  Google Scholar 

  23. K.G. Samuel, S.L. Mannan, and P. Rodriguez: Scripta Metall. Mater., 1992, vol. 26, pp. 685–89.

    Article  CAS  Google Scholar 

  24. K.G. Samuel, V. Ganesan, Bhanu Sankara Rao, S.L. Mannan, and H.S. Khushwaha: Int. J. Press. Vess. Pip., 2004, vol. 81, pp. 973–81.

    Article  CAS  Google Scholar 

  25. R. Sandhya, Bhanu Sankara Rao, and S.L. Mannan: Scripta Met., 1999, vol. 41, pp. 921–25.

    Article  CAS  Google Scholar 

  26. R. Sandhya, Bhanu Sankara Rao, and S.L. Mannan: Mater. Sci. Eng., 2005, vol. A392, pp. 326–35.

    CAS  Google Scholar 

  27. C. Gupta: Z. Metallkd., 2005, vol. 96, pp. 660–67.

    CAS  Google Scholar 

  28. L.M. Davies: Int. J. Pres. Pip., 1999, vol. 76, pp. 135–75.

    Article  ADS  Google Scholar 

  29. S.G. Druce and B.C. Edwards: Nucl. Energy, 1980, vol. 19, pp. 347–60.

    CAS  Google Scholar 

  30. M. Davies, A. Kuryakov, C. English, Y. Nikolaev, and W.L. Server: Effects of Radiation on Materials: 19th Int. Symp., M.L. Hamilton, A.S. Kumar, S.T. Rosinski, and M.L. Grossbeck, eds., ASTM STP 1366, ASTM, Philadelphia, PA, 2000, pp. 3–15.

  31. A.M. Kryukov: Proc. IAEA Specialist Meeting, Vladimir, Russia, September 15–19, 1997, IAEA, Vienna, 1997, pp. 35–40.

  32. N.N. Alekseenko, A.D. Amayev, I.V. Gorynin, and V.A. Nikolaeve: Radiation Damage of Nuclear Power Plant Steels, Russian Materials Monograph Series 2, American Nuclear Society, La Grange Park, IL, 1997, pp. 1–350.

    Google Scholar 

  33. K.L. Murty: J. Nucl. Mater., 1999, vol. 270, pp. 115–28.

    Article  ADS  Google Scholar 

  34. K.L. Murty: J. Metall., 1985, vol. 34, pp. 9–13.

    Google Scholar 

  35. M.S. Wechsler and K.L. Murty: Metall. Trans. A, 1989, vol. 20A, pp. 2637–51.

    CAS  ADS  Google Scholar 

  36. Y. Estrin and L.P. Kubin: Mater. Sci. Eng., 1991, vol. A137, pp. 125–31.

    CAS  Google Scholar 

  37. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653–60.

    Article  Google Scholar 

  38. J.W. Kim and I.S. Kim: Nucl. Eng. Des., 1997, vol. 1172, pp. 49–55.

    Article  Google Scholar 

  39. I.S. Kim and S.S. Kang: Int. Pres. Ves. Pip., 1995, vol. 62, pp. 123–27.

    Article  CAS  Google Scholar 

  40. S.S. Kang and I.S. Kim: Nucl. Technol., 1992, vol. 97, pp. 336–44.

    CAS  Google Scholar 

  41. J.T. Kim, H.K. Kwon, H.S. Chang, and Y.W. Park: Nucl. Eng. Des., 1997, vol. 174, pp. 51–58.

    Article  CAS  Google Scholar 

  42. J.W. Kim and I.S. Kim: Nucl. Eng. Des., 1997, vol. 174, pp. 59–65.

    Article  CAS  Google Scholar 

  43. C. Gupta, J.K. Chakravartty, S.L. Wadekar, and S. Banerjee: Scripta Met., 2006 vol. 55, pp. 1091–94.

    Article  CAS  Google Scholar 

  44. S.G. Lee and I.S. Kim: J. Nucl. Sci. Technol., 2001, vol. 38, pp. 120–27.

    Article  CAS  Google Scholar 

  45. S.G. Lee and I.S. Kim: J. Pres. Ves. Technol. ASME, 2001, vol. 123, pp. 173–79.

    Article  CAS  Google Scholar 

  46. Y. Katada and N. Nagata: Corr. Sci., 1985, vol. 25, pp. 693–98.

    Article  CAS  Google Scholar 

  47. J.D. Atkinson and J. Yu: Fat. Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1–9.

    Article  CAS  Google Scholar 

  48. M. Becker, D. Eifler, and E. Machenrauch: Z. Metallkd., 1990, vol. 81, pp. 191–96.

    Google Scholar 

  49. K. Pohl, P. Mayr, and E. Macherauch: Int. J. Fract., 1981, vol. 17, pp. 221–26.

    Article  CAS  Google Scholar 

  50. C. Gupta: Ph.D. Thesis, Mumbai University, Mumbai, 2007, pp. 1–250.

  51. N.P. Cochran: Sci. Am., 1976, vol. 234, pp. 24–30.

    Article  CAS  ADS  Google Scholar 

  52. T.E. Scott: Application of 2.25Cr-1Mo Steel for Thick Walled Pressure Vessel, ASTM STP 755, ASTM, Philadelphia, PA, 1982, pp. 7–12.

    Book  Google Scholar 

  53. R.W. Swindman, R.D. Thomas, R.K. Hanstad, and C.J. Long: Report No. ORNL/TM–8873, Oak Ridge National Laboratory, Oak Ridge, TN, 1983, pp. 1–85.

    Google Scholar 

  54. R.M. Horn, R.J. Kar, V.F. Zackay, and E.R. Parker: J. Mater. Energy Syst., 1979, vol. 1, pp. 77–82.

    Article  CAS  Google Scholar 

  55. R.J. Kar and J.A. Todd: Application of 2.25Cr-1Mo Steel for Thick Walled Pressure Vessel, ASTM STP 755, ASTM, Philadelphia, PA, 1982, pp. 228–35.

    Book  Google Scholar 

  56. J.A. Todd, D.W. Chung, and E.R. Parker: in Advanced Materials for Pressure Vessel Service with Hydrogen at High Temperature and Pressures, M. Semchyshen, ed., 1982 ASME, New York, NY, vol. MPC-18, pp. 179–85.

    Google Scholar 

  57. T. Wada and T.B. Cox: in Advanced Materials for Pressure Vessel Service with Hydrogen at High Temperature and Pressures, M. Semchyshen, ed., ASME, New York, NY, 1982, vol. MPC-18, pp. 111–17.

    Google Scholar 

  58. T. Wada and T.B. Cox: in Research on Chrome-Moly Steels, R.A. Swift, ed., ASME, New York, NY, 1984, vol. MPC-21, pp. 77–94.

    Google Scholar 

  59. R.A. Swift: in Research on Chrome-Moly Steels, R.A. Swift, ed., ASME, New York, NY, 1984, vol. MPC-21, pp. 95–110.

    Google Scholar 

  60. T. Ishiguro, Y. Murukami, K. Ohnishi, S. Mima, and J. Watanabe: in Research on Chrome-Moly Steels, R.A. Swift, ed., ASME, New York, NY, 1984, vol. MPC-21, pp. 43–52.

    Google Scholar 

  61. I. Kozasu, H. Suzuki, M. Yamada, and H. Tagawa: in Research on Chrome-Moly Steels, R.A. Swift, ed., ASME, New York, NY, 1984, vol. MPC-21, pp. 53–66.

    Google Scholar 

  62. E.R. Parker, R.O. Ritchie, J.A. Todd, and R.N. Spencer: in Research on Chrome-Moly Steels, R.A. Swift, ed., ASME, New York, NY, 1984, vol. MPC-21, pp. 109–20.

    Google Scholar 

  63. R.O. Ritchie, E.R. Parker, P.N. Spencer, and J.A. Todd: J. Mater. Energy Syst., 1984, vol. 6, pp. 151–60.

    Article  CAS  Google Scholar 

  64. C. Gupta, G.K. Dey, J.K. Chakravartty, D. Srivastav, and S. Banerjee: Scripta Mater., 2005, vol. 53, pp. 559–64.

    Article  CAS  Google Scholar 

  65. Kari Törrönen: VTT Internal Report No. 22, VTT, Finland, 1979, pp. 1–63.

  66. J. Janovec, A. Vyrostkova, and M. Svoboda: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 267–75.

    Article  CAS  ADS  Google Scholar 

  67. J. Pilling and N. Ridley: Metall. Trans. A, 1982, vol. 13A, pp. 557–63.

    ADS  Google Scholar 

  68. P. Wycliff, U.F. Kocks, and J.D. Embury: Scripta Metall., 1980, vol. 14, pp. 1349–53.

    Article  Google Scholar 

  69. S.T. Mahmood, K. Al-Otaib, Y.H. Jung, and K.L. Murty: J. Test. Eval., 1990, vol. 18, pp. 332–40.

    Article  CAS  Google Scholar 

  70. K.L. Murty: Mater. Sci. Eng., 1989, vol. 59, pp. 207–15.

    Google Scholar 

  71. R.W. Hayes: Acta Metall., 1983, vol. 31, pp. 365–71.

    Article  CAS  Google Scholar 

  72. Y. Brechet and Y. Estrin: Acta Metall. Mater., 1995, vol. 43, pp. 955–63.

    Article  CAS  Google Scholar 

  73. C.P. Ling and P.G. McCormick: Acta Metall., 1990, vol. 38, pp. 2631–39.

    Article  CAS  Google Scholar 

  74. A.H. Cottrell: Phil. Mag Ser. 7, 1953, vol. 44, pp. 829–32.

    CAS  Google Scholar 

  75. P.G. McCormick: Acta Metall., 1972, vol. 20, pp. 351–54.

    Article  CAS  MathSciNet  Google Scholar 

  76. P.G. McCormick: Acta Metall., 1974, vol. 22, pp. 489–93.

    Article  CAS  Google Scholar 

  77. A. Van Den Beukel: Acta Metall., 1980, vol. 28, pp. 965–69.

    Article  Google Scholar 

  78. R.W. Hayes and W.C. Hayes: Acta Metall., 1984, vol. 32, pp. 259–67.

    Article  CAS  Google Scholar 

  79. S. Venkadesan, C. Phaniraj, P.V. Shivaprasad, and P. Rodriguez: Acta Metall. Mater., 1992, vol. 40, pp. 569–80.

    Article  CAS  Google Scholar 

  80. P.G. McCormick: Acta Metall., 1973, vol. 21, pp. 873–79.

    Article  CAS  Google Scholar 

  81. P.G. McCormick: Scripta Metall., 1978, vol. 12, pp. 197–203.

    Article  CAS  MathSciNet  Google Scholar 

  82. P.G. McCormick: Acta Metall., 1988, vol. 36, pp. 3061–69.

    Article  CAS  Google Scholar 

  83. W.P. Longo and R.E. Reed Hill: Scripta Met., 1972, vol. 6, pp. 833–36.

    Article  CAS  Google Scholar 

  84. C. Gupta, J.K. Chakravartty, S.L. Wadekar, and J.S. Dubey: Mater. Sci. Eng., 2000, vol. A292, pp. 49–55.

    CAS  Google Scholar 

  85. A. Van Den Beukel: Phys. Status Solidi (a), 1975, vol. 30, pp. 197–205.

    Article  ADS  Google Scholar 

  86. S.H. Van den Brink, A. Van Den Beukel, and P.G. McCormick: Phys. Status Solidi (a), 1975, vol. 30, pp. 469–75.

    Article  ADS  Google Scholar 

  87. Y. Nakada and A.S. Keh: Acta Metall., 1970, vol. 18, pp. 437–42.

    Article  CAS  Google Scholar 

  88. C.C. Li and W.C. Leslie: Metall. Trans. A, 1978, vol. 9A, pp. 1765–73.

    CAS  ADS  Google Scholar 

  89. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., IOM Communications, London, 2000, pp. 108–12.

    Google Scholar 

  90. B.P. Kashyap, K. McTaggart, and K. Tangri: Phil. Mag., 1988, vol. 57, pp. 97–114.

    Article  CAS  Google Scholar 

  91. T. Takeyama and H. Takahashi: J. Phys. Soc. Jpn., 1975, vol. 38, pp. 1783–89.

    Article  CAS  ADS  Google Scholar 

  92. K.L. Murty: Nature, 1984, vol. 308, pp. 51–52.

    Article  CAS  ADS  Google Scholar 

  93. K.L. Murty and D.H. Oh: Scripta Metall., 1983, vol. 17, pp. 317–20.

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (CG) acknowledges the support of Professor Dr. Ing. i.R. W. Blum, Institute fur Werkstoffwissenscaften, Universitat Erlangen–Nurenberg, during the Indo German (INDO-FRG) collaboration program for the preparation and study of the extraction replica of the steel under investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gupta.

Additional information

Manuscript submitted August 9, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, C., Chakravartty, J.K. & Banerjee, S. Dynamic Strain Aging in New Generation Cr-Mo-V Steel for Reactor Pressure Vessel Applications. Metall Mater Trans A 41, 3326–3339 (2010). https://doi.org/10.1007/s11661-010-0409-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0409-x

Keywords

Navigation