Skip to main content
Log in

The Influence of Slip Character on the Creep and Fatigue Fracture of an α Ti-Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical performance of engineering titanium alloys has long been known to be sensitive to the nature of applied load waveform. Sustained load hold periods imposed during the fatigue loading of two-phase α + β alloys are detrimental to material performance. A number of factors, particularly material texture, phase morphologies, and slip behavior, are thought to affect the dwell fatigue responses of these materials. This study examines the roles of slip character and applied load waveform on an alloy with a simpler microstructure than the two-phase alloys studied previously. It is found that planar slip has significant influence over the dwell, fatigue, and fracture behaviors of equiaxed-grained, single-phase α Ti-7 wt pct Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Kim: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1982.

  2. N.S. Thirumalai: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2000.

  3. M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, and G.F. Harrison: Int. J. Fatigue, 1997, vol. 19 (S1), p. S83.

    Article  CAS  Google Scholar 

  4. J.C. Williams, M.J. Mills, S. Ghosh, S.I. Rokhlin, W.O. Soboyejo, and V. Sinha: Federal Aviation Administration, Annual Report, Contract No. DTFA03-01-C-00019, 2003–2008.

  5. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2015–26.

    Article  CAS  Google Scholar 

  6. M.R. Bache: Int. J. Fatigue, 2003, vol. 25 (9–11), pp. 1079–87.

    Article  CAS  Google Scholar 

  7. M.R. Bache, W.J. Evans, and H.M. Davies: J. Mater. Sci., 1997, vol. 32 (13), pp. 3435–42.

    Article  CAS  Google Scholar 

  8. W.J. Evans and M.R. Bache: Scripta Metall. Mater., 1995, vol. 32 (7), pp. 1019–24.

    Article  CAS  Google Scholar 

  9. O. Robyn Faber: Master’s Thesis, Oregon State University, Corvallis, OR, 1998.

  10. M.R. Winstone: in Titanium ’88: Science and Technology, 6th Proc. World Conf. on Titanium, Cannes, France, June 6–9, 1988, Les Editions de Physique, Les Ulis Cedex, France, 1989, vol. 1, p. 169.

  11. T. Neeraj and M.J. Mills: Mater. Sci. Eng. A: Struct. Mater. Prop. Microstr. Process., 2001, vol. 319, pp. 415–19.

    Article  Google Scholar 

  12. M.C. Brandes: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2008.

  13. M.R. Bache, L. Germain, T. Jackson, and A.R.M. Walker: Titanium ’07: Science and Technology, 11th Proc. World Conf. on Titanium, Kyoto, Japan, 2008, vol. 1, p. 523.

  14. S.H. Spence, W.J. Evans, and M. Cope: Proc. Int. Conf. on Fracture, 1997, p. 1571.

  15. A. Gysler and G. Lutjering: Metall. Trans. A, 1982, vol. 13A, pp. 1435–43.

    ADS  Google Scholar 

  16. M. Blackburn and J. Williams: Trans. Am. Soc. Met., 1969, vol. 62 (2), p. 398.

    CAS  Google Scholar 

  17. J.Y. Lim, Jr., C.J. McMahon, D.P. Pope, and J.C. Williams: Metall. Trans. A, 1976, vol. 7A, pp. 139–44.

    CAS  ADS  Google Scholar 

  18. J. Williams and G. Lutjering: in Titanium ’80: Science and Technology, 4th Proc. World Conf. on Titanium, Kyoto, Japan, 1980, Metallurgical Society of AIME, Warrendale, PA, 1981, vol. 1, p. 671.

  19. K. Le Biavant, S. Pommier, and C. Prioul: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25 (6), pp. 527–45.

    Article  Google Scholar 

  20. J.A. Hall: Int. J. Fatigue, 1997, vol. 19 (S1), p. S23.

    Article  CAS  Google Scholar 

  21. C.H. Wells and C.P. Sullivan: ASM Trans. Q., 1969, vol. 62 (1), p. 263.

    CAS  Google Scholar 

  22. D.K. Benson, J.C. Grosskreutz, and G.G. Shaw: Metall. Trans., 1972, vol. 3, pp. 1239–48.

    Article  CAS  Google Scholar 

  23. N. Ashbaugh, R. Brockman, D. Buchanan, G. Hartman, A. Hutson, K. Li, and W. Porter: Annual Report No. afrl-ml-wp-tr-2004-4283, Technical Report, University of Dayton Research Institute, Structural Integrity Division, Dayton, OH, 2004.

  24. A. Pilchak, A. Bhattacharjee, A. Rosenberger, and J. Williams: Int. J. Fatigue, 2008, vol. 31, p. 989.

    Article  Google Scholar 

  25. J.M. Larsen: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1987.

  26. C.W. Brown and M.A. Hicks: Fatigue Eng. Mater. Struct., 1983, vol. 6 (1), pp. 67–76.

    Article  Google Scholar 

  27. G. Lutjering, A. Gysler, and L. Wagner: in Titanium ’88: Science and Technology, 6th Proc. World Conf. on Titanium, Cannes, France, June 6–9, 1988, Les Editions de Physique, Les Ulis Cedex, France, 1989, vol. 1, p. 71.

  28. U. Lienert, M.C. Brandes, J. Bernier, J. Weiss, S.D. Sastry, M.P. Miller, and M.J. Mills: Mater. Sci. Eng. A: Struct. Mater.: Prop., Microstr. Process., 2009, vol. 524 (1–2), pp. 46–54.

  29. F. Dunne and D. Rugg: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31(11), pp. 949-58.

    Article  CAS  Google Scholar 

  30. A. Stroh: Proc. R. Soc. London. Ser. A, Mathem. Phys. Sci., 1954, vol. 223 (1154), p. 404.

  31. F.P.E. Dunne, A. Walker, and D. Rugg: Proc. Royal Society a Mathematical Physical and Engineering Sciences, 2007, vol. 463 (2082), pp. 1467–89.

    Article  CAS  Google Scholar 

  32. M.R. Bache, H.M. Davies, and W.J. Evans: in Titanium ’95: Science and Technology, 8th Proc. World Conf. on Titanium, Birmingham, United Kingdom, Oct. 22–26, 1995, Institute of Materials, London, England, 1996, vol. 2, pp. 1347–54.

  33. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16 (7), pp. 443–52.

    Article  CAS  Google Scholar 

  34. J.C. Williams and G. Lutjering: in Titanium ’80: Science and Technology, 4th Proc. World Conf. on Titanium, Metallurgical Society of AIME, Warrendale, PA, vol. 1, p. 671.

  35. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing, New York, NY, 1992.

  36. W. Wang, M. Brandes, M. Mills, B.C. Larson, and G.E. Ice: TMS Fall Meeting, Chicago, IL, 2003, TMS, Warrendale, PA, 2003.

    Google Scholar 

  37. A.P. Woodfield, M.D. Gorman, J.A. Sutliff, and R.R. Corderman: TMS Fall Meeting ’98, Chicago, IL, Oct. 11–15, 1998, TMS, Warrendale, PA, 1999, p. 111.

  38. A.P. Woodfield: private communication, GE Aviation, Cincinnati, OH, 2003–2008.

Download references

Acknowledgments

This research was supported by the United States Federal Aviation Administration under Grant No. 08-G-009. The authors thank the Technical Monitors Joseph Wilson and Tim Mouzakis for their encouragement and support of this work. Further, the authors appreciate Dr. S.L. Semiatin, Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base (Dayton, OH), for providing the materials used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Brandes.

Additional information

Manuscript submitted May 14, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, M.C., Mills, M.J. & Williams, J.C. The Influence of Slip Character on the Creep and Fatigue Fracture of an α Ti-Al Alloy. Metall Mater Trans A 41, 3463–3472 (2010). https://doi.org/10.1007/s11661-010-0407-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0407-z

Keywords

Navigation