Skip to main content
Log in

Experimental Study on the Pore Structure of Directionally Solidified Porous Cu-Mn Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

By use of the directional solidification of the metal-gas eutectic method (GASAR), a porous Cu-Mn alloy with oriented pores has been fabricated successfully. The variation of pore growth direction, pore distribution, and pore size were studied. In addition, by observing the microstructure on the transverse and longitudinal sections, it was found that the oriented pores could be formed with a cellular and columnar dendritic solidification mode if the cellular and primary dendrite arm spacing were much less than the pore diameter, which increases with the decrease of solidification velocity. In contrast, when an equiaxed dendritic structure appears, no oriented pore structure can be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.X. Li and Y. Liu: Mater. Rev., 2003, vol. 17, pp. 1–4.

    Google Scholar 

  2. V.I. Shapovalov: U.S. Patent No. 5181549, January 26, 1993.

  3. V.I. Shapovalov and L. Boyko: Adv. Eng. Mater., 2004, vol. 6, pp. 407–10.

    Article  CAS  Google Scholar 

  4. H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, and K. Murakami: Coll. Surf. A, 2001, vol. 179, pp. 209–14.

    Article  CAS  Google Scholar 

  5. Y. Liu, Y.X. Li, and H.W. Zhang: Acta Metall. Sinica, 2004, vol. 40, pp. 1121–26.

    CAS  Google Scholar 

  6. H. Hoshiyama, T. Ikeda, and H. Nakajima: High Temp. Mater. Processes, 2007, vol. 26, pp. 303–16.

    CAS  Google Scholar 

  7. S.K. Hyun, T. Ikeda, and H. Nakajima: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 201–05.

    Article  CAS  Google Scholar 

  8. S.K. Hyun and H. Nakajima: Adv. Eng. Mater., 2002, vol. 4, pp. 741–44.

    Article  CAS  Google Scholar 

  9. T. Ikeda, M. Tsukamoto, and H. Nakajima: Mater. Trans., 2002, vol. 43, pp. 2678–84.

    Article  CAS  Google Scholar 

  10. I. Takuya, T. Masakazu, S.K. Hyun, and H. Nakajima: 4th Int. Conf. Porous Metals and Metal Foaming Technology, Kyoto, Japan, 2005, pp. 229–32

    Google Scholar 

  11. J.S. Park, S. Suzuki, and H. Nakajima: 5th Int. Conf. Porous Metals and Metallic Foams, Montreal, PQ, Canada, 2007, pp. 229–32.

    Google Scholar 

  12. H.W. Zhang, Y.X. Li, and Y. Liu: Acta Metall. Sinica, 2007, vol. 43, pp. 113–18.

    MATH  CAS  ADS  Google Scholar 

  13. H.W. Zhang, Y.X. Li, and Y. Liu: Acta Metall. Sinica, 2007, vol. 43, pp. 11–16.

    CAS  Google Scholar 

  14. G.R. Jiang, Y. Liu, Y.X. Li, Y.Q. Su, and J.J. Guo: Acta Metall. Sinica, 2008, vol. 44, pp. 129–33.

    CAS  Google Scholar 

  15. J.S. Park, S.K. Hyun, S. Suzuki, and H. Nakajima: Acta Mater., 2007, vol. 55, pp. 5646–54.

    Article  CAS  Google Scholar 

  16. Y. Liu, Y. Li, J. Wan, and H.W. Zhang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2871–78.

    Article  CAS  Google Scholar 

  17. S.K. Hyun and H. Nakajima: Mater. Lett., 2003, vol. 57, pp. 3149–57.

    Article  CAS  Google Scholar 

  18. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Rockport, MA, 1986, pp. 1–15.

    Google Scholar 

  19. R.C. Atwood, S. Sridhar, W.L. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48, pp. 405–17.

    Article  CAS  Google Scholar 

  20. P.D. Lee and J.D. Hunt: Acta Mater., 2001, vol. 49, pp. 1383–98.

    Article  CAS  Google Scholar 

  21. M.L.N.M. Melo, E.M.S. Rizzo, and R.G. Santos: Mater. Sci. Eng. A, 2004, vol. 374A, pp. 351–61.

    Google Scholar 

  22. H. Jamgotchian, R. Trivedi, and B. Billia: J. Cryst. Growth, 1993, vol. 134, pp. 181–95.

    Article  CAS  ADS  Google Scholar 

  23. N. Gokcen: J. Phase Equilib. Diffus., 1993, vol. 14, pp. 76–83.

    CAS  Google Scholar 

  24. J. Feng, W.D. Huang, X. Lin, T. Li, Y.F. Xue, and Y. H. Zhou: Acta Metall. Sinica, 1998, vol. 34, pp. 1267–72.

    CAS  Google Scholar 

  25. J.G. Li, X.M. Mao, and H.Z. Fu: Acta Metall. Sinica, 1990, vol. 26, pp. A309–A312.

    CAS  Google Scholar 

  26. J.G. Li, X.M. Mao, H.Z. Fu, and Z.X. Shi: Mater. Sci. Process, 1991, vol. 5, pp. 461–66.

    Google Scholar 

  27. A. Schievenbusch and G. Zimmermann: ISIJ Int., 1995, vol. 35, pp. 618–23.

    Article  CAS  Google Scholar 

  28. G.R. Jiang, Y.X. Li, and Y. Liu: Trans. Nonferrous Met. Soc. China, accepted for publication.

  29. D.M. Xu, F.Y. Cao, and Q.C. Li: Acta Metall. Sinica, 1995, vol. 31, pp. 494–500.

    Google Scholar 

  30. L. Ratke and J. Alkemper: Acta Mater., 2000, vol. 48, pp. 1939–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC–Yunnan Joint Foundation of China (Grant No. U0837603) and NSF–Beijing (Grant No. 2092017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Li.

Additional information

Manuscript submitted January 21, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, G., Li, Y. & Liu, Y. Experimental Study on the Pore Structure of Directionally Solidified Porous Cu-Mn Alloy. Metall Mater Trans A 41, 3405–3411 (2010). https://doi.org/10.1007/s11661-010-0402-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0402-4

Keywords

Navigation