Skip to main content
Log in

Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of hydrogen on the fracture toughness and fracture mechanisms for the nitrogen-strengthened, austenitic stainless steel 22Cr-13Ni-5Mn, an alloy with potential value in high-pressure hydrogen containment components. The fracture initiation toughness and crack-growth resistance were measured before and after thermal precharging with hydrogen and as a function of crack-growth orientation and material strength. The effects of crack-growth orientation and material strength dominated over the effect of hydrogen exposure. The former two variables caused changes in fracture initiation toughness of up to 400 pct, while dissolved hydrogen resulted in only modest decreases in fracture initiation toughness of 20 to 40 pct. Coarse Z-phase (CrNbN) particles aligned in bands governed the measured fracture toughness and observed fracture mode. Fracture progressed by void nucleation and growth in the Z-phase bands, forming microcracks that ultimately linked through the remaining austenite matrix. Crack-growth orientation, material strength, and hydrogen exposure affected the nucleation and growth of voids in the Z-phase bands and the subsequent linking of microcracks. Control or elimination of the coarse, banded Z phase would likely enhance the fracture resistance of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. San Marchi, B.P. Somerday, X. Tang, and G.H. Schiroky: Int. J. Hydrogen Energy 2007, vol. 33, pp. 889–904.

    Article  Google Scholar 

  2. C. San Marchi, K.A. Nibur, D.K. Balch, B.P. Somerday, X. Tang, G.H. Schiroky, and T. Michler: Effects of Hydrogen on Materials, B. Somerday, P. Sofronis, and R. Jones, eds., ASM INTERNATIONAL, Materials Park, OH, 2009, pp. 88–96.

    Google Scholar 

  3. C. San Marchi, B.P. Somerday, X. Tang, and G.H. Schiroky: Proc. PVP-2008: ASME Pressure Vessels and Piping Division Conf., Chicago, IL, 2008, ASME, PVP2008-642402, New York, NY, 2008.

  4. M.C. Mataya, C.A. Perkins, S.W. Thompson, and D.K. Matlock: Metall. Mater. Trans. A, 1996. vol. 27A, pp. 1251–66.

    Article  CAS  Google Scholar 

  5. G.R. Caskey: in Environmental Degradation of Engineering Materials in Hydrogen, M.R. Louthan, R.P. McNitt, and R.D. Sisson, eds., Laboratory for the Study of Environmental Degradation of Engineering Materials, Virginia Polytechnic Institute, Blacksburg VA, 1981, pp. 283–302.

    Google Scholar 

  6. G.R. Caskey: Hydrogen Compatibility Handbook for Stainless Steels (DP-1643), EI du Pont Nemours, Savannah River Laboratory, Aiken, SC, 1983.

    Google Scholar 

  7. S. Fukuyama, M. Imade, T. Iijima, and K. Yokogawa: Proc. PVP-2008: ASME Pressure Vessels and Piping Division Conf., Chicago, IL 2008, ASME, PVP2008-61849, New York, NY, 2008.

  8. L. Zhang, M. Wen, M. Imade, S. Fukuyama, and K. Yokogawa: Acta Mater., 2008, vol. 56, pp. 3414–21.

    Article  CAS  Google Scholar 

  9. B.C. Odegard, J.A. Brooks, and A.J. West: in Effect of Hydrogen on Materials, A.W. Thompson, and I.M. Bernstein, eds., TMS-AIME, New York, NY, 1976, pp. 116–25.

    Google Scholar 

  10. B.C. Odegard and A.J. West: Mater. Sci. Eng. A, 1975, vol. 19, pp. 261–70.

    Article  CAS  Google Scholar 

  11. C. San Marchi, D.K. Balch, K.A. Nibur, and B.P. Somerday: J. Pressure Vessel Technol., 2008, vol. 130, pp. 041401-1–041401-9.

    Article  Google Scholar 

  12. L. Ma, G. Liang, J. Tan, L. Rong, and Y. Li: J. Mater. Sci. Technol., 1999, vol. 15, pp. 67–70.

    Article  CAS  Google Scholar 

  13. T.L. Capeletti and M.R. Louthan: J. Eng. Mater. Technol., 1977, vol. 99, pp. 153–58.

    CAS  Google Scholar 

  14. S.L. Robinson and B.P. Somerday: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R.E. Ricker, G.W. Was, and R.H. Jones, eds., TMS, Warrendale, PA, 2003 pp. 1019–28.

    Google Scholar 

  15. M.W. Perra: in Environmental Degradation of Engineering Materials in Hydrogen, M.R. Louthan, R.P. McNitt, and R.D. Sisson, eds., VPI Press, Blacksburg, VA, 1981, pp. 321–33.

    Google Scholar 

  16. C. San Marchi, B.P. Somerday, and S.L. Robinson: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 100–16.

    Article  CAS  Google Scholar 

  17. “Standard Terminology Relating to Fatigue and Fracture Testing,” ASTM Standard E1823-09b, ASTM INTERNATIONAL, West Conshohocken, PA, 2009, DOI: 10.1520/E1823-09B, www.astm.org.

  18. “Standard Test Method for Measurement of Fracture Toughness,” ASTM Standard E1820-05, ASTM International, West Conshohocken, PA, 2005, DOI: 10.1520/E1820-05, www.astm.org.

  19. “Test Method for J-Integral Characterization of Fracture Toughness,” ASTM Standard E1737-96, Annual Book of ASTM Standards, 03.01, ASTM, West Conshohocken, PA, 1997, pp. 968–91.

  20. K.A. Nibur, B.P. Somerday, D.K. Balch, and C. San Marchi: Acta Mater., 2009, vol. 57, pp. 3795–3809.

    Article  CAS  Google Scholar 

  21. D.H. Jack and K.H. Jack: J. Iron Steel Inst., 1972 pp. 790–92.

  22. W.M. Garrison Jr. and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  ADS  Google Scholar 

  23. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda: Int. Met. Rev., 1985, vol. 30, pp. 157–79.

    Google Scholar 

  24. A.W. Thompson: Metall. Trans. A, 1976, vol. 10A, pp. 727–31.

    ADS  Google Scholar 

  25. A.W. Thompson: in Effect of Hydrogen on Materials, A.W. Thompson, and I.M. Bernstein, eds., TMS-AIME, Warrendale, PA, 1976, pp. 467–79.

    Google Scholar 

  26. A.W. Thompson and I.M. Bernstein: Fracture, Proc. ICF4, Waterloo, ON, Canada, 1977, pp. 249–54.

  27. H.K. Birnbaum: Scripta Metall. Mater., 1994, vol. 31, pp. 149–53.

    Article  CAS  Google Scholar 

  28. K.A. Nibur, D.F. Bahr, and B.P. Somerday: Acta Mater., 2006, vol. 54, pp. 2677–84.

    Article  CAS  Google Scholar 

  29. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 749–57.

    Google Scholar 

  30. I.M. Robertson: Eng. Fract. Mech., 1999, vol. 64, pp. 649–73.

    Article  Google Scholar 

  31. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. A176, pp. 191–202.

    Google Scholar 

  32. B.P. Somerday, M . Dadfarnia, D.K. Balch, K.A. Nibur, C.H. Cadden, and P. Sofronis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2350–62.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

Electron microscopy was conducted by J. Chames. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.A. Nibur.

Additional information

U.S. GOVERNMENT WORK NOT PROTECTED BY U.S. COPYRIGHT

Manuscript submitted January 11, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nibur, K., Somerday, B., San Marchi, C. et al. Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings. Metall Mater Trans A 41, 3348–3357 (2010). https://doi.org/10.1007/s11661-010-0396-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0396-y

Keywords

Navigation