Metallurgical and Materials Transactions A

, Volume 41, Issue 11, pp 2794–2804 | Cite as

Effect of Strain Rate on Evolution of the Deformation Microstructure and Texture in Polycrystalline Copper and Nickel

Article

Abstract

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 × 10−4 to ~2.0 × 10+3 s−1 show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weaker \( \left\langle {101} \right\rangle \) texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end \( \left\langle {101} \right\rangle \) component over large strain rates (from 3 × 10−4 to 10+2 s−1) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 × 10+3 s−1, the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the \( \left\langle {101} \right\rangle \) component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

References

  1. 1.
    U.F. Kocks, C.N. Tome, and H.R. Wenk: Texture and Anisotropy, Cambridge University Press, London, UK, 1998.MATHGoogle Scholar
  2. 2.
    S. Speziale, I. Lonardelli, L.Miyagi, J. Pehl, C.E. Tommaseo, and H.-R. Wenk: J. Phys. Cond. Matter, 2006, vol. 18, pp. S1007–20.CrossRefADSGoogle Scholar
  3. 3.
    B. Plunkett, O. Cazacu, and R.A. Lebensohn: J. Phys. IV Proc., 2006, vol. 134, pp. 81–86.CrossRefGoogle Scholar
  4. 4.
    M.A. Meyers: Dynamic Behaviour of Materials, Wiley, New York, NY, 1994.CrossRefGoogle Scholar
  5. 5.
    R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923–53.CrossRefGoogle Scholar
  6. 6.
    S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–69.CrossRefADSGoogle Scholar
  7. 7.
    T. Leffers: Scripta Metall., 1968, vol. 2, pp. 447–52.CrossRefGoogle Scholar
  8. 8.
    T. Leffers and O.B. Pederson: Scripta Mater., 2002, vol. 46, pp. 741–46.CrossRefGoogle Scholar
  9. 9.
    U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.CrossRefGoogle Scholar
  10. 10.
    G.R. Canova, C. Fressengeas, A. Molinari, and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 1961–70.CrossRefGoogle Scholar
  11. 11.
    J.W. Hutchinson: Proc. R. Soc., 1976, vol. A348, pp. 101–27.ADSGoogle Scholar
  12. 12.
    A. Bhattacharyya, D. Rittel, and G. Ravichandran: Scripta Mater., 2005, vol. 52, pp. 657–61.CrossRefGoogle Scholar
  13. 13.
    A. Bhattacharyya, D. Rittel, and G. Ravichandran: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1137–45.CrossRefADSGoogle Scholar
  14. 14.
    A.T. English and G.Y. Chin: Acta Metall., 1965, vol. 13, pp. 1013–16.CrossRefGoogle Scholar
  15. 15.
    M.G. Stout, J.S. Kallend, U.F. Kocks, M.A. Przystupa, and A.D. Rollett: Proc. Eighth Conf. on Texture of Materials, 1988, vol. 5.9, pp. 479–84.Google Scholar
  16. 16.
    J. Hirsch and K. Lucke: Acta Metall., 1988, vol. 36, no. 76–1-3, pp. 2863–2927.Google Scholar
  17. 17.
    D.A. Hughes, R. Lebensohn, H.R. Wenk, and A. Kumar: Proc. R. Soc. Lond. A, 2000, vol. 456, pp. 921–53.CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    S. Suwas, R.K. Ray, J.J. Fundenberger, T. Grosdidien, and W. Skrotzki: Solid State Phenom., 2005, vol. 105, pp. 345–50.CrossRefGoogle Scholar
  19. 19.
    R.K. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861–72.CrossRefGoogle Scholar
  20. 20.
    ASM International: High Strain Rate Compression Testing, Mechanical Testing, vol 8, ASM Handbook, ASM International, Materials Park, OH, 1985, pp. 190–207.Google Scholar
  21. 21.
    T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.CrossRefGoogle Scholar
  22. 22.
    G. Ribárik, T. Ungár, and J. Gubicza: J. Appl. Cryst., 2001, vol. 34, pp. 669–76.CrossRefGoogle Scholar
  23. 23.
    F. Montheillet and J. Le Coze: Phys. Stat. Sol. A, 2002, vol. 189, pp. 51–58.CrossRefADSGoogle Scholar
  24. 24.
    W. Skrotzki, N. Scheerbaum, C. Oertel, R.A. Massion, S. Suwas, and L.S. Toth: Acta Mater., 2007, vol. 55, pp. 2013–24.CrossRefGoogle Scholar
  25. 25.
    M.A. Meyers, V. Nesterenko, J. LaSalvia, and Q. Xue: Mater. Sci. Engg. A, 2001, vol. 317, pp. 204–25.CrossRefGoogle Scholar
  26. 26.
    M.A. Meyers, Y. Xu, Q. Xue, M. Perez-Prado, and T. McNelly: Acta Mat., 2003, vol. 51, pp. 1307–25.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations