Stress-Corrosion Cracking of AISI 4340 Steel in Aqueous Environments

Abstract

Stress corrosion cracking of the high-strength martensitic steel AISI 4340 (yield stress = 1503 MPa) in NaCl aqueous solutions of different concentrations was studied experimentally using compact tension specimens in free corroding conditions. The experiments were conducted under the controls of constant load, constant crack opening displacement (COD), constant loading rate, and constant COD rate. Despite the differences in controlling conditions, the experiments yielded similar results for the threshold stress intensity factor and the plateau velocity in the 3.5 wt pct NaCl solution. Dependence of the plateau velocity on the NaCl concentration was observed, whereas the values of the threshold stress intensity factors seem to be independent of the NaCl concentration in distilled water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Y. Hirose and T. Mura: Eng. Fract. Mech., 1984, vol. 19, no. 2, pp. 317–29.

    CAS  Article  Google Scholar 

  2. 2.

    S. Ramamurthy and A. Atrens: Corr. Sci., 1993, vol. 34, no. 9, pp. 1385–402.

    CAS  Article  Google Scholar 

  3. 3.

    R.H. Jones, M.J. Danielson, and D.R. Baer: Fracture Mechanics: Perspectives and Directions (Twentieth Symp.), Eds. R.P. Wei and R.P. Gangloff, ASTM, Philadelphia, PA, 1989, pp. 209–32.

    Chapter  Google Scholar 

  4. 4.

    R.P. Wei and R.P. Gangloff: In Fracture Mechanics: Perspectives and Directions (Twentieth Symp.), Eds. R.P. Wei and R.P. Gangloff, ASTM, Philadelphia, PA, 1989, pp. 233–64.

    Chapter  Google Scholar 

  5. 5.

    W.Y. Chu, C.M. Hsiao, and J.W. Wang: Metall. Trans. A, 1985, vol. 16A, pp. 1663–70.

    CAS  Google Scholar 

  6. 6.

    N. Taniguchi and A.R. Troiano: Trans. ISIJ, 1969, vol. 9, no. 4, pp. 306–12.

    CAS  Google Scholar 

  7. 7.

    Y. Lee and R.P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2174–90.

    CAS  Article  Google Scholar 

  8. 8.

    S. Serebrinsky, E.A. Carter, and M. Ortiz: J. Mech. Phys. Solids, 2004, vol. 52, pp. 2403–30.

    CAS  Article  Google Scholar 

  9. 9.

    I. Scheider, M. Pluff, and W. Dietzel: Eng. Fract. Mech., 2008, vol. 75, pp. 4283–91.

    Article  Google Scholar 

  10. 10.

    T. Boellinghaus and H. Hoffmeister: Corrosion, 2000, vol. 56, pp. 611–22.

    CAS  Article  Google Scholar 

  11. 11.

    V.K. Tewari: Tool Alloy Steels, 1981, vol. 16, no. 3–4 pp. 89–93.

    CAS  Google Scholar 

  12. 12.

    U. Gramberg: Corrosion Cracking, Ed. V.S. Goel, Salt Lake City, UT, 1985, pp. 147–50.

    Google Scholar 

  13. 13.

    D.A. Berman and V.S. Agarwala: Hydrogen Embrittlement: Prevention and Control, Ed. L. Raymond, ASTM, Philadelphia, PA, 1988, pp. 98–104.

    Chapter  Google Scholar 

  14. 14.

    W.G. Clark, Jr.: J. Mater. Energy Syst., 1979, vol. 1, no. 1, pp. 33–40.

    CAS  Article  Google Scholar 

  15. 15.

    Y. Takeda and C.J. McMahon, Jr.: Metall. Trans. A, 1981, vol. 12A, pp. 1255–66.

    Google Scholar 

  16. 16.

    W. Dietzel: Mater. Sci. (Russia), 2004, vol. 40, no. 6, pp. 749–55.

    CAS  Article  Google Scholar 

  17. 17.

    N. Eliaz, A. Shachar, B. Tal, and D. Eliezer: Eng. Failure Anal., 2002, vol. 9, pp. 167–84.

    CAS  Article  Google Scholar 

  18. 18.

    J.B. Leblond, D. Nejem, D. Dubois, and S. Talbot-Besnard: Acta Metall., 1987, vol. 35, no. 7, pp. 1703–14.

    CAS  Article  Google Scholar 

  19. 19.

    S.I. Pyun and H.K. Lee: Metall. Trans. A., 1990, vol. 21A, pp. 2577–83.

    CAS  Google Scholar 

  20. 20.

    R.P. Wei and S.R. Novak: JTEVA, 1987, vol. 15, no. 1, pp. 38–75.

    CAS  Google Scholar 

  21. 21.

    A.J. McEvily, Jr., Ed.: Atlas of Stress-Corrosion and Corrosion Fatigue Curves, ASM INTERNATIONAL, Materials Park, OH, 1990, p. 541.

    Google Scholar 

  22. 22.

    H.C. Chu and R.P. Wei: Corrosion, 1990, vol. 46, no. 6, pp. 468–76.

    CAS  Google Scholar 

  23. 23.

    R.O. Ritchie, M.H. Castro Cedeno, V.F. Zackay, and E.R. Parker: Metall. Trans. A, 1978, vol. 9A, pp. 35–40.

    CAS  Google Scholar 

  24. 24.

    G.F. Li, R.G. Wu, and T.C. Lei: Metall. Trans. A, 1990, vol. 21A, pp. 503–05.

    CAS  Google Scholar 

  25. 25.

    R.M. Rieck, A. Atrens, and I.O. Smith: Mater. Forum, 1989, vol. 13, pp. 48–53.

    CAS  Google Scholar 

  26. 26.

    R.H. Jones: Stress-Corrosion Cracking: Materials Performance and Evaluation, ASM INTERNATIONAL, Materials Park OH, 1992.

    Google Scholar 

  27. 27.

    W. Dietzel and K. Ghosal: Fatigue Fract. Engng. Mater. Struct., 1998, vol. 21, no. 10, pp. 1279–86.

    CAS  Article  Google Scholar 

  28. 28.

    A. Oehlert and A. Atrens: Corr. Sci., 1996, vol. 38, pp. 1159–69.

    CAS  Article  Google Scholar 

  29. 29.

    S. Liu and D.D. Macdonald: Corrosion, 2002, vol. 58, no. 10, pp. 835–45.

    CAS  Article  Google Scholar 

  30. 30.

    Y. Hirose and T. Mura: Eng. Fract. Mech., 1989, vol. 34, no. 3, pp. 729–42.

    Article  Google Scholar 

  31. 31.

    I.W. Kang, J.K. Choi, and S.I. Pyun: Steel Res. Int., 1987, vol. 58, no. 12, pp. 565–69.

    CAS  Google Scholar 

  32. 32.

    D.D. Macdonald: 2001 TMS Annual Meeting, New Orleans, LA, 2001, pp. 193–210.

  33. 33.

    J.A. Hauser II, R.W. Judy, and T.W. Crooker: Corrosion Cracking, ASM INTERNATIONAL, Materials Park, OH, 1985, pp. 215–20.

    Google Scholar 

  34. 34.

    B.F. Brown and C.D. Beachem: Corr. Sci., 1965, vol. 5, no. 11, pp. 745–50.

    Article  Google Scholar 

  35. 35.

    C.S. Carter: Corrosion, 1971, vol. 27, pp. 471–77.

    CAS  Google Scholar 

  36. 36.

    A.A. Sheinker and J.D. Wood: Stress Corrosion Cracking of Metals— A State of the Art, ASTM, Philadelphia, PA, 1972, pp. 16–38.

    Book  Google Scholar 

  37. 37.

    P. Shahinian and R.W. Judy, Jr.: Stress Corrosion—New Approaches, ASTM, Philadelphia, PA, 1976, pp. 128–42.

    Book  Google Scholar 

  38. 38.

    Y.A. Krupin and I.K. Kiselev: Mater. Sci. Eng. A., 1990, vol. A130, no. 1, pp. 29–35.

    CAS  Google Scholar 

  39. 39.

    S. Yuyama, T. Kishi, and Y. Hisamatsu: J. Acoust. Emiss., 1983, vol. 2, no. 1–2, pp. 71–93.

    CAS  Google Scholar 

  40. 40.

    W.B. Lisagor: Environment-Sensitive Fracture: Evaluation and Comparison of Test Methods, ASTM, Philadelphia, PA, 1984, pp. 80–97.

    Book  Google Scholar 

  41. 41.

    Y. Hirose and K. Tanaka: J. Soc. Mater. Sci. Jpn., 1980, vol. 29, no. 323, pp. 822–28.

    CAS  Google Scholar 

  42. 42.

    M. Tsuda, Y. Hirose, Z. Yajima, and K. Tanaka: Proc. Second Int. Conf. on Residual Stresses, Nancy, France, 1988, pp. 997–1002.

  43. 43.

    H.W. Chung: Diss. Abstr. Int., 1983, vol. 44, no. 4, p. 204.

    Google Scholar 

  44. 44.

    R.M. Rieck, A. Atrens, and I.O. Smith: Metall. Trans. A., 1989, vol. 20A, pp. 889–95.

    CAS  Google Scholar 

  45. 45.

    E.M. Hackett, P.J. Moran, and J.P. Gudas: Fracture Mechanics: Seventeenth Volume, ASTM, Philadelphia, PA, 1986, pp. 512–41.

    Book  Google Scholar 

  46. 46.

    Y. Hirose, Z. Yajima, and K. Tanaka: Adv. X Ray Anal., 1984, vol. 27, pp. 213–20.

    CAS  Google Scholar 

  47. 47.

    M. Tsuda, Y. Hirose, Z. Yajima, and K. Tanaka: J. Soc. Mater. Sci. Jpn., 1988, vol. 37, no. 417, pp. 599–605.

    CAS  Google Scholar 

  48. 48.

    Y. Hirose and K. Tanaka: Metallic Corrosion. 8th Int. Congress on Metallic Corrosion, vol. 1, Mainz, Germany, 1981. pp. 553–58.

    Google Scholar 

  49. 49.

    G. Sandoz: Metall. Trans., 1972, vol. 3, pp. 1169–76.

    CAS  Article  Google Scholar 

  50. 50.

    V.K. Tewari, R. Winand, J. Charlier, J.P. Elinck, and J. Van Muylder: Steel Res. Int., 1982, vol. 53, no. 8, pp. 329–32.

    CAS  Google Scholar 

  51. 51.

    F.P. Ford: Embrittlement by the Localized Crack Environment, Philadelphia, PA, 1983, pp. 117–47.

  52. 52.

    W.G. Clark and J.D. Landes, Jr.: Stress Corrosion—New Approaches, ASTM, Philadelphia, PA, 1976, pp. 108–27.

    Book  Google Scholar 

  53. 53.

    K. Hirano, S. Ishizaki, H. Kobayashi, and H. Nakazawa: JTEVA, 1985, vol. 13, no. 2, pp. 162–68.

    CAS  Google Scholar 

  54. 54.

    R.A. Mayville, T.J. Warren, and P.D. Hilton: J. Eng. Mater. Technol., 1987, vol. 109, no. 3, pp. 188–93.

    Article  Google Scholar 

  55. 55.

    R.A. Mayville, T.J. Warren, and P.D. Hilton: JTEVA, 1989, vol. 17, no. 4, pp. 203–11.

    CAS  Google Scholar 

  56. 56.

    W. Dietzel, K.H. Schwalbe, and D. Wu: Fatigue Fract. Eng. Mater. Struct., 1989, vol. 12, no. 6, pp. 495–510.

    Article  Google Scholar 

  57. 57.

    N. Winzer, A. Atrens, W. Dietzel, G. Song, and K.U. Kainer: Mater. Sci. Eng. A, 2008, vol. 472, pp. 97–106.

    Article  Google Scholar 

  58. 58.

    W. Dietzel and J. Mueller-Roos: Mater. Sci., 2001, vol. 37, no. 2,pp. 264–71.

    CAS  Article  Google Scholar 

  59. 59.

    ISO 7539-9:2003, Corrosion of Metals and Alloys—Stress Corrosion Testing, Part 9, 2003.

  60. 60.

    R.P.M. Proctor and H.W. Paxton: Trans. ASM, 1969, vol. 62, pp. 989–99.

    CAS  Google Scholar 

  61. 61.

    E.A. Steigerwald and W.D. Benjamin: Metall. Trans., 1971, vol. 2, pp. 606–08.

    CAS  Article  Google Scholar 

  62. 62.

    V.A. Marichev: Zashchita Metallov, 1975, vol. 11, no. 3, pp. 296–99.

    CAS  Google Scholar 

  63. 63.

    A. Nadai: Theory of Flow and Fracture of Solids, 2nd ed., vol. 1, McGraw-Hill, New York, NY, 1950, pp. 347–52.

    Google Scholar 

  64. 64.

    J.C. Newman, Jr.: Int. J. Fracture, 1981, vol. 17, pp. 567–78.

    Article  Google Scholar 

  65. 65.

    A. Atrens and Z.F. Wang: J. Mater. Sci., 1998, vol. 33, pp. 405–15.

    CAS  Article  Google Scholar 

  66. 66.

    D.L. Dull and L. Raymond: Metall. Trans., 1972, vol. 3, pp. 2943–47.

    CAS  Article  Google Scholar 

  67. 67.

    I.M. Austen: Int. J. Fracture, 1976, vol. 12, pp. 253–63.

    CAS  Article  Google Scholar 

  68. 68.

    K. Nakasa and H. Takei: Eng. Fract. Mech., 1983, vol. 18, pp. 879–85.

    Article  Google Scholar 

  69. 69.

    Y.A. Krupin and I.K. Kiselev: Scripta Metall. Mater., 1990, vol. 24, pp. 2113–18.

    CAS  Article  Google Scholar 

  70. 70.

    C. Berger: Corrosion Cracking, Salt Lake City, UT, 1985, pp. 235–40.

  71. 71.

    Y. Hirose and T. Mura: Eng. Fract. Mech., 1984, vol. 19, no. 6, pp. 1057–67.

    CAS  Article  Google Scholar 

  72. 72.

    R.P. Wei and S.R. Novak: Environment-Sensitive Fracture: Evaluation and Comparison of Test Methods, ASTM, Philadelphia, PA, 1984, pp. 75–79.

    Book  Google Scholar 

  73. 73.

    A.K. Wong, L. Milton, and W.F. Czyrklis: Report AMMRC-MS-79-1, Army Materials and Mechanics Research Center, Watertown, MS, 1979.

  74. 74.

    W.G. Clark, Jr.: Flaw Growth and Fracture, ASTM, Philadephia, PA, 1977, pp. 331–44.

    Book  Google Scholar 

  75. 75.

    R.K. Singh Raman, R. Rihan, and R.N. Ibrahim: Mater. Sci. Eng. A, 2007, vols. 452–453, pp. 652–56.

    Google Scholar 

  76. 76.

    R.N. Ibrahim, R. Rihan, and R.K. Singh Raman: Eng. Fract. Mech., 2008, vol. 75, no. 6, pp. 1623–34.

    Article  Google Scholar 

  77. 77.

    B.P. Somerday and R.P. Gangloff: Mater. Sci. Eng., 1998, vol. 254A, pp. 166–78.

    Google Scholar 

  78. 78.

    B.P. Somerday and R.P. Gangloff: Mater. Sci. Eng., 1998, vol. 254A, pp. 179–88.

    Google Scholar 

  79. 79.

    S. Yamamoto and T. Fujita: Proc. Fracture 1969, Chapman & Hall, London, UK, 1969, pp. 425–38.

  80. 80.

    W.W. Gerberich, P.G. Marsh, and J.W. Hoehn: Proc. Hydrogen Effects in Materials, Moran, WY, 1994, pp. 539–51.

  81. 81.

    W.W. Gerberich, R.A. Oriani, M.J. Lii, X. Chen, and T. Foecke: Philos. Mag., 1991, vol. A63, no. 2, pp. 363–76.

    Google Scholar 

  82. 82.

    J.A. Wert: Corrosion, 1983, vol. 39, no. 2, pp. 71–73.

    CAS  Google Scholar 

  83. 83.

    A. Oehlert and A. Atrens: J. Mater. Sci., 1998, vol. 33, no. 3, pp. 775–81.

    CAS  Article  Google Scholar 

  84. 84.

    J.H. Underwood, J.C. Newman, Jr., and R.R. Seeley: JTEVA, 1980, vol. 8, no. 6, pp. 308–13.

    Google Scholar 

Download references

Acknowledgments

The work was supported financially by the Office of Naval Research (N00014-08-1-0646). The authors gratefully acknowledge the inspiring suggestions made by Dr. Asuri K. Vasudevan in the course of the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanyao Jiang.

Additional information

Manuscript submitted November 1, 2009.

Appendix

Appendix

Tables AI through AVI

Table AI Constant Load Experiments
Table AII Constant COD Experiments
Table AIII Constant Displacement at Loading Point Experiments
Table AIV Loading Rate-Controlled Experiments
Table AV Experiments Under COD Rate Control
Table AVI Summary of Existing Results on SCC of AISI 4340 in Aqueous Environments

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalnaus, S., Zhang, J. & Jiang, Y. Stress-Corrosion Cracking of AISI 4340 Steel in Aqueous Environments. Metall Mater Trans A 42, 434–447 (2011). https://doi.org/10.1007/s11661-010-0335-y

Download citation

Keywords

  • Stress Intensity Factor
  • Crack Growth Rate
  • Stress Corrosion Crack
  • Crack Opening Displacement
  • Crack Opening Displacement