Skip to main content

Advertisement

Log in

Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys

  • Symposium: Structural Transitions and Local Deformation Processes at and near Grain Boundaries
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Beta-Ti alloys contain sufficient concentrations of β stabilizing alloy additions to permit retention of the metastable β phase after cooling to room temperature. Decomposition of the metastable β phase results in the formation of several possible phases, at least two of which are metastable. Concurrently, equilibrium α phase often forms first by heterogeneous nucleation at the α grain boundaries with an accompanying precipitate free zone observed adjacent to the grain boundary α. The grain boundary regions are softer than the precipitation hardened matrix. As a consequence, fracture follows the prior β grain boundaries, especially in high-strength conditions. This fracture mode results in low tensile ductility and/or fracture toughness. This article will describe methods of minimizing or eliminating grain boundary α formation by using metastable transition precipitates to nucleate α more rapidly. The effects on fracture behavior also will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Krupp, W. Floer, J.F. Lei, Y.M. Hu, H.J. Christ, A. Schick, and C.P. Fritzen: Philos. Mag., 2002, vol. 82 (17/18), pp. 3321–32.

    CAS  Google Scholar 

  2. G. Lütjering, J. Albrecht, C. Sauer, and T. Krull: Mater. Sci. Eng., A., 2007, vol. 468–470 (Special Issue SI), pp. 201–09.

    Google Scholar 

  3. J.O. Peters and G. Lütjering: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 2805–18.

    Article  CAS  Google Scholar 

  4. A.L. Pilchak, R.E.A. Williams, and J.C. Williams: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 106–24.

    Article  CAS  Google Scholar 

  5. J.C. Williams and G. Lütjering: Titanium, 2nd ed., Springer, Berlin, Germany, 2007, pp. 32.

    Google Scholar 

  6. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser: Acta Mater., 2009, vol. 57 (7), pp. 2136–47.

    Article  CAS  Google Scholar 

  7. F. Prima, P. Vermaut, G. Texier, D. Ansel, and T. Gloriant: Scripta Mater., 2006, vol. 54 (4), pp. 645–48.

    Article  CAS  Google Scholar 

  8. J.C. Williams: The Science Technology and Applications of Titanium, Plenum Press, New York, NY, 1973, pp. 1433–94.

    Google Scholar 

  9. S.Z. Zhang, Z.Q. Liu, G.D. Wang, L.Q. Chen, X.H. Liu, and R. Yang: J. Cent. South Univ. Technol., 2009, vol. 16 (3), pp. 354–59.

    Article  CAS  Google Scholar 

  10. B. Peterson, P.C. Collins, and H.L. Fraser: Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 357–65.

    Google Scholar 

  11. A.L. Pilchak, D.M. Norfleet, M.C. Juhas, and J.C. Williams: Metall. Mater. Trans., 2008, vol. 39A, pp. 1519–24.

    Article  CAS  Google Scholar 

  12. T. Zhai, Y.G. Xu, J.W. Martin, A.J. Wilkinson, and G.A.D. Briggs: Int. J. Fatig., 1999, vol. 21 (9), pp. 889–94.

    Article  Google Scholar 

  13. P.C. Collins, B. Welk, T. Searles, J. Tiley, J.C. Russ, and H.L. Fraser: Mater. Sci. Eng. A., 2009, vol. 508 (1–2), pp. 174–82.

    Google Scholar 

  14. L. Kovarik, S.A. Court, H.L. Fraser, and M.J. Mills: Acta Mater., 2008, vol. 56 (17), pp. 4804–15.

    Article  CAS  Google Scholar 

  15. C. Sauer and G. Lütjering: Mater. Sci. Eng. A., 2001, vol. 319 (Special Issue SI), pp. 393–97.

    Google Scholar 

  16. K. Tokaji, K. Ohya, and H. Kariya: Fatigue Frac. Eng. Mater. Struct., 2000, vol. 23 (9), pp. 759–66.

    Article  CAS  Google Scholar 

  17. Y.M. Hu, W. Floer, U. Krupp, and H.J. Christ: Mater. Sci. Eng. A., 2000, vol. 278 (1–2), pp. 170–80.

    CAS  Google Scholar 

  18. V. Sinha, M.J. Mills, and J.C. Williams: J. Mater. Sci., 2007, vol. 42 (19), pp. 8334–41.

    Article  CAS  Google Scholar 

  19. A.P. Woodfield, M.D. Gorman, J.A. Sutliff, and R.R. Corderman: Fatigue Behavior of Titanium Alloys, Eds. R.R. Boyer, D. Eylon, and G. Lütjering, TMS, Warrendale, PA, 1999, pp. 111–18.

    Google Scholar 

  20. A.L Pilchak and J.C. Williams: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 22–25.

    Article  CAS  Google Scholar 

  21. D.C. Slavik, J.A. Wert, and R.P. Gangloff: J. Mater. Res., 1993, vol. 8 (10), pp. 2482–91.

    Article  CAS  Google Scholar 

  22. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2015–26.

  23. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Scripta Mater., 2005, vol. 52 (6), pp. 531–36.

    Article  CAS  Google Scholar 

  24. C.C. Wojcik, K.S. Chan, and D.A. Koss: Acta Metall., 1988, vol. 36 (5), pp. 1261–70.

    Article  CAS  Google Scholar 

  25. X.H. Wu, J. del Prado, Q. Li, A. Huang, D. Hu, and M.H. Loretto: Acta Mater., 2006, vol. 54 (20), pp. 5233–48.

    Google Scholar 

  26. M. Chu, X. Wu, I.P. Jones, and M.H. Loretto: Mater. Sci. Technol., 2006, vol. 22 (6), pp. 661–66.

    Article  CAS  Google Scholar 

  27. J.C. Williams and M.J. Blackburn: Trans. Metall. Soc. AIME, 1969, vol. 245 (10), pp. 2352–55.

    CAS  Google Scholar 

  28. J.C. Williams, B.S. Hickman, and H.L. Marcus: Metall. Trans., 1971, vol. 2, pp. 1913.

    CAS  Google Scholar 

Download references

Acknowledgments

Support for this work is gratefully acknowledged from the U.S. Office of Naval Research D3-D program, Grant. N00014-05-1-0504. The authors would like to thank Adam Pilchak for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Foltz.

Additional information

Manuscript submitted January 8, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltz, J.W., Welk, B., Collins, P.C. et al. Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys. Metall Mater Trans A 42, 645–650 (2011). https://doi.org/10.1007/s11661-010-0322-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0322-3

Keywords

Navigation