Skip to main content
Log in

Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-μm-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s−1). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.F. Cook and G.M. Pharr: J. Am. Ceram. Soc., 1990, vol. 73, pp. 787–817.

    Article  CAS  Google Scholar 

  2. B.R. Lawn: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1977–94.

    CAS  Google Scholar 

  3. T. Burgess and M. Ferry: Mater. Today, 2009, vol. 12, pp. 24–32.

    Article  CAS  Google Scholar 

  4. N.K. Mukhopadhyay and P. Paufler: Int. Mater. Rev., 2006, vol. 51, pp. 209–45.

    Article  CAS  Google Scholar 

  5. K.W. Peter: J. Non-Cryst. Solids, 1970, vol. 5, pp. 103–15.

    Article  CAS  ADS  Google Scholar 

  6. A. Arora, D.B. Marshall, and B.R. Lawn: J. Non-Cryst. Solids, 1979, vol. 31, pp. 415–28.

    Article  CAS  ADS  Google Scholar 

  7. J.T. Hagan: J. Mater. Sci., 1980, vol. 15, pp. 1417–24.

    Article  CAS  ADS  Google Scholar 

  8. F. Ernsberger: J. Non-Cryst. Solids, 1977, vol. 25, pp. 293–321.

    Article  CAS  ADS  Google Scholar 

  9. S. Yoshida, J.C. Sangleboeuf, and T. Rouxel: J. Mater. Res., 2005, vol. 20, pp. 3404–12.

    Article  CAS  ADS  Google Scholar 

  10. T.M. Gross and M. Tomozawa: J. Non-Cryst. Solids, 2008, vol. 354, pp. 4056–62.

    Article  CAS  ADS  Google Scholar 

  11. C.R. Kurkjian, G.W. Kammlott, and M.M. Chaudhri: J. Am. Ceram. Soc., 1995, vol. 78, pp. 737–44.

    Article  CAS  Google Scholar 

  12. T. Miura, Y. Benino, R. Sato, and T. Komatsu: J. Eur. Ceram. Soc., 2003, vol. 23, pp. 409–16.

    Article  CAS  Google Scholar 

  13. H. Ji, V. Keryvin, T. Rouxel, and T. Hammouda: Scripta Mater., 2006, vol. 55, pp. 1159–62.

    Article  CAS  Google Scholar 

  14. S.P. Gunnasekera and D.G. Holloway: Phys. Chem. Glasses, 1973, vol. 14, pp. 45–52.

    Google Scholar 

  15. C.J. Fairbanks, R.S. Polvani, S.M. Wiederhorn, B.J. Hockey, and B.R. Lawn: J. Mater. Sci. Lett., 1982, vol. 1, pp. 391–93.

    Article  CAS  Google Scholar 

  16. M. Yoshioka and N. Yoshioka: J. Appl. Phys., 1995, vol. 78, pp. 3431–37.

    Article  CAS  ADS  Google Scholar 

  17. L. Ainsworth: J. Soc. Glass Technol., 1954, vol. 38, pp. 479–500.

    CAS  Google Scholar 

  18. L. Hohne: Ullner C. VDI Berichte., 1995, vol. 1194, pp. 119–28.

    Google Scholar 

  19. K. Suzuki, Y. Benino, T. Fujiwara, and T. Komatsu: J. Am. Ceram. Soc., 2002, vol. 85, pp. 3102–04.

    Article  CAS  Google Scholar 

  20. J. Malzbender: J. Am. Ceram. Soc., 2003, vol. 86, pp. 2237–38.

    Article  CAS  Google Scholar 

  21. T. Komatsu: J. Am. Ceram. Soc., 2003, vol. 86, pp. 2239–40.

    Article  CAS  Google Scholar 

  22. C.L. Eriksson, P.L. Larsson, and D.J. Rowcliffe: Mater. Sci. Eng. A, 2003, vol. 340, pp. 193–203.

    Article  Google Scholar 

  23. J. Gong, H. Miao, and Z. Peng: Mater. Lett., 2004, vol. 58, pp. 1349–53.

    Article  CAS  Google Scholar 

  24. Z. Peng, J. Gong, and H. Miao: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 2193–2201.

    Article  CAS  Google Scholar 

  25. K.O. Kese, Z.C. Li, and B. Bergman: Mater. Sci. Eng. A, 2005, vol. 404, pp. 1–8.

    Article  CAS  Google Scholar 

  26. K.O. Kese and Z.C. Li: Scripta Mater., 2006, vol. 55, pp. 699–702.

    Article  CAS  Google Scholar 

  27. P. Grau, G. Berg, H. Meinhard, and S. Mosch: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1557–64.

    Article  CAS  Google Scholar 

  28. D.J. Morris and R.F. Cook: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1494–1501.

    Article  CAS  Google Scholar 

  29. R.K. Kalia, A. Nakano, I. Szlufarska, and P. Vashishta: Proc. Users Group Conf. (DOD UGC’04) by IEEE Computer Society, Williamsburg, VA, June 7–11, 2004.

  30. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    Article  CAS  ADS  Google Scholar 

  31. C.A. Schuh, T.G. Nieh, and Y. Kawamura: J. Mater. Res., 2002, vol. 17, pp. 1651–54.

    Article  CAS  ADS  Google Scholar 

  32. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, and A.I. Tyurin: Scripta Mater., 2001, vol. 45, pp. 947–52.

    Article  CAS  Google Scholar 

  33. C.A. Schuh and T.G. Nieh: Acta Mater., 2003, vol. 51, pp. 87–99.

    Article  CAS  Google Scholar 

  34. O. Shikimaka and D. Grabco: J. Phys. D Appl. Phys., 2008, vol. 41, pp. 301–07.

    Article  CAS  Google Scholar 

  35. H. Bei, Z.P. Lu, and E.P. George: Phys. Rev. Lett., 2004, vol. 93, pp. 125504-1–125504-4.

    Article  ADS  CAS  Google Scholar 

  36. C.E. Packard and C.A. Schuh: Acta Mater., 2007, vol. 55, pp. 5348–58.

    Article  CAS  Google Scholar 

  37. H. Shang, T. Rouxel, M. Buckley, and C. Bernard: J. Mater. Res., 2006, vol. 21, pp. 632–38.

    Article  CAS  ADS  Google Scholar 

  38. R.W.K. Honeycombe: Plastic Deformation of Metals, 2nd ed., Edward Arnold Ltd., London, 1984, pp. 123–38.

    Google Scholar 

  39. A. Puthucode, R. Banerjee, S. Vadlakonda, R. Mirshams, and M.J. Kaufman: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1552–59.

    Article  CAS  ADS  Google Scholar 

  40. S. Shim, H. Bei, E.P. Georgea, and G.M. Pharr: Scripta Mater., 2008, vol. 59, pp. 1095–98.

    Article  CAS  Google Scholar 

  41. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Nature, 2002, vol. 418, pp. 307–10.

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Q. Ma and D.R. Clarke: J. Mater. Res., 1995, vol. 10, pp. 853–63.

    Article  CAS  ADS  Google Scholar 

  43. S.J. Bull, T.F. Page, and E.H. Yoffe: Phil. Mag. Lett., 1989, vol. 59, pp. 281–88.

    Article  CAS  ADS  Google Scholar 

  44. E.O. Bernhardt: Z. Metallkd., 1941, vol. 33, pp. 135–44.

    CAS  Google Scholar 

  45. W.D. Nix and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–25.

    Article  MATH  CAS  ADS  Google Scholar 

  46. M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton: Acta Mater., 2001, vol. 49, pp. 4363–74.

    Article  CAS  Google Scholar 

  47. A. Iost and R. Bigot: J. Mater. Sci., 1996, vol. 31, pp. 3573–77.

    CAS  Google Scholar 

  48. H. Li, A. Ghosh, Y.H. Han, and R.C. Bradt: J. Mater. Res., 1993, vol. 8, pp. 1028–32.

    Article  CAS  ADS  Google Scholar 

  49. M.V. Swain and M. Wittling: Fracture Mechanics of Ceramics, R.C. Bradt, ed., Plenum Press, New York, NY, 1996, vol. 11, pp. 379–87.

  50. J. Gong and Z. Guan: Mater. Lett., 2001, vol. 47, pp. 140–44.

    Article  CAS  Google Scholar 

  51. Y.X. Gao and H. Fan: J. Mater. Sci., 2002, vol. 37, pp. 4493–98.

    Article  CAS  Google Scholar 

  52. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu: J. Mater. Sci., 2009, vol. 44, pp. 4911–18.

    Article  CAS  ADS  Google Scholar 

  53. C. Hays and E.G. Kendall: Metallography, 1973, vol. 6, pp. 275–82.

    Article  CAS  Google Scholar 

  54. H. Li and R.C. Bradt: Mater. Sci. Eng. A, 1991, vol. 142, pp. 51–61.

    Article  Google Scholar 

  55. H.G.M. Kreuzer and R. Pippan: Acta Mater., 2007, vol. 55, pp. 3229–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, Central Glass and Ceramic Research Institute (CGCRI), Kolkata, for his kind permission to publish this article. In addition, the authors appreciate the infrastructural support received from all colleagues and particularly those received from the colleagues of the Mechanical Test Section at CGCRI. Finally, the authors gratefully acknowledge the financial support received from CSIR (Network Project TAREMAC No. NWP 0027). One of the authors (AD) also earnestly acknowledges the grant of a Senior Research Fellowship from CSIR, India (ACK No. 141011/2K8/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Kumar Mukhopadhyay.

Additional information

Manuscript submitted September 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, R., Dey, A. & Mukhopadhyay, A.K. Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass. Metall Mater Trans A 41, 1301–1312 (2010). https://doi.org/10.1007/s11661-010-0176-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0176-8

Keywords

Navigation