Skip to main content
Log in

Phase Transitions and Reaction Mechanism of Ilmenite Oxidation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The oxidation of ilmenite ore is used in titanium processing. The effects of oxidation conditions, namely, temperature, ilmenite particle size, and oxygen pressure, on the product phase were investigated. The oxidation product from 773 to 1073 K (500 to 800 °C) includes a shear structure phase (Fe2Ti3O9, named H239), rutile, and hematite, while pseudobrookite is the only stable phase above 1073 K (800 °C). The particle size of the ilmenite ore is the most important factor that determines the crystalline phase composition of the product. A small particle size enhances the formation of H239. High oxygen pressure also favors the formation of H239, while the temperature is a less important factor. Similar experiments showed that these trends also hold for the oxidation of pure ilmenite. The oxidation mechanism is discussed. The oxidation kinetics is well described by a parabolic law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G. Teufer and A.K. Temple: Nature, 1966, pp. 179–81.

  2. M.T. Frost, I.E. Grey, I.R. Harrowfield, and C. Li: Am. Mineral., 1986, vol. 71, pp. 167–75.

    CAS  Google Scholar 

  3. H.N. Sinha: Extractive Metallurgy Symp. Series, Australian Institute of Mining and Metallurgy, Melbourne, 1984, pp. 163–68.

    Google Scholar 

  4. R.G. Becher, R.G. Canning, B.A. Goodheart, and S. Uusna: Aust. IMM Proc., Australian Institute of Mining and Metallurgy, Melbourne, 1965, vol. 214, pp. 21–44.

  5. G.F. Balderson and C.A. MacDonald: U.S. Patent 5,885,324, 1999, pp. 1–7.

  6. K. Sun, R. Takahashi, and J. Yagi: ISIJ Int., 1993, vol. 33, pp. 523–28.

    Article  CAS  Google Scholar 

  7. G.Q. Zhang and O. Ostrovski: Int. J. Miner. Process, 2002, vol. 64, pp. 201–18.

    Article  CAS  Google Scholar 

  8. J.L. Overholt, G. Vaux, and J.L. Rodda: Am. Mineral., 1950, vol. 35, pp. 117–19.

    CAS  Google Scholar 

  9. S. Akimoto, T. Nagata, and T. Katsura: Nature, 1957, vol. 179, 37–38.

    Article  CAS  ADS  Google Scholar 

  10. M.D. Karkhanavala and A.C. Momin: Econ. Geol., 1959, vol. 54, pp. 1095–1102.

    Article  CAS  Google Scholar 

  11. I.E. Grey and A.F. Reid: J. Solid State Chem., 1972, vol. 4, pp. 186–94.

    Article  CAS  ADS  Google Scholar 

  12. D.B. Rao and M. Rigaud: High Temp. Sci., 1974, vol. 6, pp. 323–41.

    CAS  Google Scholar 

  13. D.B. Rao and M. Rigaud: Oxid. Met., 1975, vol. 9, pp. 99–105.

    Article  CAS  Google Scholar 

  14. T.A. Sosedko and B.K. Kasatov: Dokl. Akad. Nauk SSSR, 1980, vol. 250, pp. 712–15.

    CAS  Google Scholar 

  15. S.K. Gupta, V. Rajakumar, and P. Grieveson: Can. Metall. Q., 1989, vol. 28, pp. 331–35.

    CAS  Google Scholar 

  16. S.K. Gupta, V. Rajakumar, and P. Grieveson: Metall. Trans. B, 1991, vol. 22B, pp. 711–16.

    Article  CAS  ADS  Google Scholar 

  17. R.A. Briggs and A. Sacco, Jr.: Metall. Trans. A, 1993, vol. 24A, pp. 1257–64.

    CAS  ADS  Google Scholar 

  18. Y. Chen: J. Alloys Compd., 1997, vol. 257, pp. 156–60.

    Article  CAS  Google Scholar 

  19. Y. Chen: J. Alloys Compd., 1998, vol. 266, pp. 150–54.

    Article  CAS  Google Scholar 

  20. M. Jablonski and A. Przepiera: J. Therm. Anal. Calorim., 2001, vol. 66, pp. 617–22.

    Article  CAS  Google Scholar 

  21. I.E. Grey and C. Li: The AusIMM Proc., 2001, vol. 306, pp. 35–42.

    CAS  Google Scholar 

  22. W. Kwestroo and A. Roos: J. Inorg. Nucl. Chem., 1960, vol. 13, pp. 325–26.

    Article  CAS  Google Scholar 

  23. I.E. Grey, A.F. Reid, and J.G. Allpress: J. Solid State Chem., 1973, vol. 8, pp. 86–99.

    Article  CAS  ADS  Google Scholar 

  24. C.R. Hubbard, E.H. Evans, and D.K. Smith: J. Appl. Crystallogr., 1976, vol. 9, pp. 169–74.

    Article  Google Scholar 

  25. R. Takagi: Phys. Soc. Jpn., 1957, vol. 12, pp. 1212–18.

    Article  CAS  ADS  Google Scholar 

  26. E.A. Gulbransen and T.P. Copan: Nature, 1960, vol. 186, p. 959.

    Article  CAS  ADS  Google Scholar 

  27. R.L. Tallman and E.A. Gulbransen: Nature, 1968, vol. 218, pp. 1046–47.

    Article  CAS  ADS  Google Scholar 

  28. D.A. Voss, E.P. Butler, and T.E. Mitchell: Metall. Trans. A, 1982, vol. 13A, 929–35.

    ADS  Google Scholar 

  29. Y.Y. Fu, J. Chen, and H. Zhang: Chem. Phys. Lett., 2001, vol. 350, pp. 491–94.

    Article  CAS  ADS  Google Scholar 

  30. X.G. Wen, Su. H. Wang, Y. Ding, Z.L. Wang, and S.H. Yang: J. Phys. Chem. B, 2005, vol. 109, pp. 215–20.

    Article  CAS  PubMed  Google Scholar 

  31. H. El Kadiri, R. Molins, and Y. Bienvenu: Mater. Sci. Forum, 2004, vols. 461–464, pp. 1107–16.

    Article  Google Scholar 

  32. H. El Kadiri, R. Molins, Y. Bienvenu, and M.F. Horstemeyer: Oxid. Met., 2005, vol. 64, pp. 63–97.

    Article  CAS  Google Scholar 

  33. J.E. Harris: Acta Mater., 1978, vol. 26, pp. 1033–41.

    Article  CAS  Google Scholar 

  34. Z. Suo, D.V. Kubair, A.G. Evans, D.R. Clarke, and V.K. Tolpygo: Acta Mater., 2003, vol. 51, pp. 959–74.

    Article  CAS  Google Scholar 

  35. W. Jander: Z. Anorg. Allg. Chem., 1927, vol. 163, pp. 1–30.

    Article  CAS  Google Scholar 

  36. A. Jha and S.J. Yoon: J. Mater. Sci., 1999, vol. 34, pp. 307–22.

    Article  CAS  Google Scholar 

  37. H. Sakai, T. Tsuji, and K. Naito: J. Nucl. Sci. Technol., 1989, vol. 26, pp. 321–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC) (Project No. 20,736,004) and the National Basic Research Program of China (Grant No. 2009 CB219 901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wang.

Additional information

Manuscript submitted March 2, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Wang, Y. & Wei, F. Phase Transitions and Reaction Mechanism of Ilmenite Oxidation. Metall Mater Trans A 41, 1338–1348 (2010). https://doi.org/10.1007/s11661-010-0173-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0173-y

Keywords

Navigation