Skip to main content

Advertisement

Log in

Mechanisms of Ductility in CoTi and CoZr B2 Intermetallics

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present research is conducted in order to elucidate the operative deformation mechanisms allowing ductility in the B2 (CsCl) intermetallics CoTi and CoZr. A twofold approach combines in-situ neutron diffraction during uniaxial compression with elastoplastic self-consistent (EPSC) polycrystal modeling. Tensile and compression tests of CoZr and CoTi confirm that both intermetallics are ductile at room temperature. Low compressive yield points of −62 and −50 MPa are identified for CoTi and CoZr, respectively. Analysis of stress-strain curves, in-situ neutron diffraction internal strain measurements, and EPSC modeling confirm that the initial plasticity is accommodated via the established \( \left\langle { 100} \right\rangle \left\{ {0 1 1} \right\} \) slip mode. However, a sudden decrease in the hardening rate observed in the macroscopic stress-strain curve and apparent in the internal stress developments signals the activation of a secondary mechanism, which helps to explain the anomalous ductility. The EPSC simulations involving either \( \left\langle { 1 10} \right\rangle \left\{ {\overline{1} 10} \right\} \) or \( \left\langle { 1 1 1} \right\rangle \left\{ {1\overline{1} 0} \right\} \) slip mechanisms coupled with \( \left\langle { 1 0 0} \right\rangle \) slip can reproduce the observed transitions at −350 and −250 MPa for CoTi and CoZr, respectively. Implications related to previous observations of a yield strength anomaly and the possible influence of kink banding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Lasalmonie: Intermetallics, 2006, vol. 14, pp. 1123–29.

    Article  CAS  Google Scholar 

  2. D.B. Miracle: Acta Metall. Mater., 1993, vol. 41, pp. 649–84.

    Article  CAS  Google Scholar 

  3. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Int. Mater. Rev., 1993, vol. 38, pp. 193–232.

    CAS  Google Scholar 

  4. R. von Mises: Z. Angew. Math. Mech., 1928, vol. 8, pp. 161–85.

    Article  MATH  Google Scholar 

  5. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  6. W.A. Rachinger and A.H. Cottrell: Acta Metall., 1956, vol. 4, pp. 109–13.

    Article  CAS  Google Scholar 

  7. D.I. Potter: Mater. Sci. Eng., 1970, vol. 5, pp. 201–09.

    Article  CAS  Google Scholar 

  8. M. Yamaguchi and Y. Umakoshi: Prog. Mater. Sci., 1990, vol. 34, pp. 1–148.

    Article  CAS  Google Scholar 

  9. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z.H. Zhang, T. Lograsso, D. Hsu, C.H.C. Lo, Y.Y. Ye, A. Slager, and D. Kesse: Nat. Mater., 2003, vol. 2, pp. 587–90.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. A.M. Russell, Z. Zhang, T.A. Lograsso, C.C.H. Lo, A.O. Pecharsky, J.R. Morris, Y. Ye, K.A. Gschneidner, and A.J. Slager: Acta Mater., 2004, vol. 52, pp. 4033–40.

    Article  CAS  Google Scholar 

  11. G.H. Cao, D. Shechtman, D.M. Wu, A.T. Becker, L.S. Chumbley, T.A. Lograsso, A.M. Russell, and K.A. Gschneidner: Acta Mater., 2007, vol. 55, pp. 3765–70.

    Article  CAS  Google Scholar 

  12. A.M. Russell, Z. Zhang, K.A. Gschneidner, T.A. Lograsso, A.O. Pecharsky, A.J. Slager, and D.C. Kesse: Intermetallics, 2005, vol. 13, pp. 565–71.

    Article  CAS  Google Scholar 

  13. Y. Kaneno, T. Takasugi, and S. Hanada: Mater. Sci. Eng., A, 2001, vol. 302, pp. 215–21.

    Article  Google Scholar 

  14. Y. Kaneno, K. Asao, M. Yoshida, H. Tsuda, and T. Takasugi: J. Alloys Compd., 2008, vol. 456, pp. 125–34.

    Article  CAS  Google Scholar 

  15. T. Takasugi, K. Tsurisaki, O. Izumi, and S. Ono: Philos. Mag. A, 1990, vol. 61, pp. 785–800.

    Article  CAS  ADS  Google Scholar 

  16. T. Takasugi, M. Yoshida, and T. Kawabata: Philos. Mag. A, 1992, vol. 65, pp. 29–40.

    Article  CAS  ADS  Google Scholar 

  17. T. Takasugi and O. Izumi: J. Mater. Sci., 1988, vol. 23, pp. 1265–73.

    Article  CAS  ADS  Google Scholar 

  18. M. Wittmann and I. Baker: Mater. Sci. Eng., A, 2002, vols. 329–331, pp. 206–12.

    Google Scholar 

  19. A. Francois and P. Veyssiere: Intermetallics, 1994, vol. 2, pp. 9–22.

    Article  CAS  Google Scholar 

  20. M. Yoshida and T. Takasugi: Philos. Mag. A, 1993, vol. 68, pp. 401–17.

    Article  CAS  ADS  Google Scholar 

  21. C. Lall, M.H. Loretto, and I.R. Harris: Acta Metall., 1978, vol. 26, pp. 1631–41.

    Article  CAS  Google Scholar 

  22. L. Zhang, M.L. Jenkins, and G. Taylor: J. Cryst. Growth, 2006, vol. 289, pp. 308–16.

    Article  CAS  ADS  Google Scholar 

  23. T. Takasugi, S. Hanada, M. Yoshida, and D. Shindo: Philos. Mag. A, 1995, vol. 71, pp. 347–58.

    Article  CAS  ADS  Google Scholar 

  24. T. Yamaguchi, Y. Kaneno, and T. Takasugi: Scripta Mater., 2005, vol. 52, pp. 39–44.

    Article  CAS  Google Scholar 

  25. M.A.M. Bourke, D.C. Dunand, and E. Ustundag: Appl. Phys. A, 2002, vol. 74, pp. S1707–S1709.

    Article  CAS  ADS  Google Scholar 

  26. B. Clausen: SMARTSware Manual, The Regents of the University of California, Los Alamos, NM, 2003, pp. 1–22.

    Google Scholar 

  27. R. Von Dreele: J. Appl. Crystallogr., 1997, vol. 30, pp. 517–25.

    Article  Google Scholar 

  28. U.F. Kocks and D.G. Westlake: Trans. TMS-AIME, 1967, vol. 239, pp. 1107–09.

    CAS  Google Scholar 

  29. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48, pp. 1003–08.

    Article  CAS  Google Scholar 

  30. D.W. Brown, M.A.M. Bourke, B. Clausen, T.M. Holden, C.N. Tomé, and R. Varma: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1439–49.

    Article  CAS  ADS  Google Scholar 

  31. J.R. Cho, D. Dye, K.T. Conlon, M.R. Daymond, and R.C. Reed: Acta Mater., 2002, vol. 50, pp. 4847–64.

    Article  CAS  Google Scholar 

  32. P.A. Turner and C.N. Tome: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.

    Article  CAS  Google Scholar 

  33. J.D. Eshelby: Proc. R. Soc. London, Ser. A, 1957, vol. 241, pp. 376–96.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. D.S. Agosta, J.E. Hightower, K. Foster, R.G. Leisure, and Z. Gavra: J. Alloys Compd., 2002, vol. 346, pp. 1–5.

    Article  CAS  Google Scholar 

  35. H. Yasuda, T. Takasugi, and M. Koiwa: Mater. Trans., JIM, 1991, vol. 32, pp. 48–51.

    CAS  Google Scholar 

  36. M.H. Yoo, T. Takasugi, S. Hanada, and O. Izumi: Mater. Trans., JIM, 1990, vol. 31, pp. 435–42.

    CAS  Google Scholar 

  37. B. Winkler: Inst. f. Geowissenschaften/FE Mineralogie/Abt. Kristallographie, Universitaet Frankfurt, Frankfurt am Main, Germany, private communication, Nov. 2008.

  38. M. Berveiller and A. Zaoui: J. Mech. Phys. Solids, 1978, vol. 26, pp. 325–44.

    Article  MATH  CAS  ADS  Google Scholar 

  39. P. Franciosi, M. Berveiller, and A. Zaoui: Acta Metall., 1980, vol. 28, pp. 273–83.

    Article  CAS  Google Scholar 

  40. J.A. Wollmershauser, S. Kabra, and S.R. Agnew: Acta Mater., 2009, vol. 57, pp. 213–23.

    Article  CAS  Google Scholar 

  41. H.R. Wenk, L. Lutterotti, and S. Vogel: Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 515, pp. 575–88.

    Article  CAS  ADS  Google Scholar 

  42. C.J. Neil, J.A. Wollmershauser, S.R. Agnew, B. Clausen, and C.N. Tomé: unpublished research, 2009.

  43. S. Ahzi: Modelling Simul. Mater. Sci. Eng., 1999, vol. 5, pp. 841–50.

    Article  ADS  Google Scholar 

  44. J.D. Cotton, M.J. Kaufman, and R.D. Noebe: Scripta Metall. Mater., 1991, vol. 25, pp. 2395–98.

    Article  CAS  Google Scholar 

  45. M. Nakamura and Y. Sakka: J. Mater. Sci., 1988, vol. 23, pp. 4041–48.

    Article  CAS  ADS  Google Scholar 

  46. M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–98.

    Article  CAS  Google Scholar 

  47. M.A. Meyers, O. Vöhringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  CAS  Google Scholar 

  48. S.G. Song and G.T. Gray: Acta Metall. Mater., 1995, vol. 43, pp. 2339–50.

    Article  CAS  Google Scholar 

  49. B.H. Kear and H.G.F. Wilsdorf: Trans. TMS-AIME, 1962, vol. 224, pp. 382–86.

    CAS  Google Scholar 

  50. P. Veyssière: in Mechanics and Materials: Fundamentals and Linkages, M.A. Meyers, R.W. Armstrong, and H.O.K. Kirchner, eds., John Wiley & Sons, New York, NY, 1999, pp. 358–59.

  51. D. Shindo, M. Yoshida, B.T. Lee, T. Takasugi, and K. Hiraga: Intermetallics, 1995, vol. 3, pp. 167–71.

    Article  CAS  Google Scholar 

  52. S.R. Kalidindi, T. Zhen, and M.W. Barsoum: Mater. Sci. Eng., A, 2006, vol. 418, pp. 95–98.

    Article  Google Scholar 

  53. M. Nakamura and Y. Sakka: J. Mater. Sci., 1989, vol. 24, pp. 2891–97.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Arlington, VA) through a CAREER Grant No. DMR-0547981. The authors thank Drs. Saurabh Kabra and Bjørn Clausen, Los Alamos National Laboratory, for helping with neutron diffraction experimental design and data analysis. The authors are also grateful to Mr. Cecil A. Carmichael, Jr. and Dr. Evan Ohriner of the ORNL for performing the arc casting and hot extrusion used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.R. Agnew.

Additional information

This article is based on a presentation given in the symposium “Neutron and X-Ray Studies of Advanced Materials,” which occurred February 15–19, 2009, during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollmershauser, J., Neil, C. & Agnew, S. Mechanisms of Ductility in CoTi and CoZr B2 Intermetallics. Metall Mater Trans A 41, 1217–1229 (2010). https://doi.org/10.1007/s11661-009-9990-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9990-2

Keywords

Navigation