Skip to main content
Log in

Dislocation Configurations in Nanocrystalline FeMo Sintered Components

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Net-shape compaction of a nanocrystalline ball-milled commercial Fe-1.5 wt pct Mo powder was done via spark plasma sintering (SPS) and capacitor discharge sintering (CDS). A detailed microstructure analysis, performed by X-ray diffraction–whole powder pattern modeling (XRD-WPPM), shows that CDS, owing to the faster sintering conditions, retains a much finer and more uniform microstructure with dislocations uniformly distributed inside the nanocrystalline grains. Conversely, SPS causes dislocations to pile up and extensive grain growth to occur, especially when high sintering temperatures are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.J. Fecht: in Nanostructured Materials and Composites Prepared by Solid State Processing, C.C. Koch, ed., Noyes Publications, Norwick, NY, 2002, pp. 73–113.

    Google Scholar 

  2. J.R. Groza: in Nanostructured Materials and Composites Prepared by Solid State Processing, C.C. Koch, ed., Noyes Publications, Norwick, NY, 2002, pp. 115–78.

    Google Scholar 

  3. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, p. 103.

    Article  CAS  Google Scholar 

  5. C.C. Koch: J. Mater. Sci., 2007, vol. 42, pp. 1403–14.

    Article  CAS  ADS  Google Scholar 

  6. J. Rawers: Nanostruct. Mater., 1999, vol. 11 (4), pp. 513–22.

    Article  CAS  Google Scholar 

  7. K.Y. Sastry, L. Froyen, J. Vleugels, O. Van der Biest, R. Schattevoy, and J. Hennicke: Rev. Adv. Mater. Sci., 2004, vol. 8 (1), pp. 27–32.

    CAS  Google Scholar 

  8. K.Y. Sastry, L. Froyen, J. Vleugels, O. Van der Biest, R. Schattevoy, and K. Hummert: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1409–14.

    Article  Google Scholar 

  9. S. Libardi, M. Leoni, L. Facchini, M. D’Incau, P. Scardi, and A. Molinari: Mater. Sci. Eng. A, 2007, vols. 445–446, pp. 244–50.

    Google Scholar 

  10. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127–288.

    Article  Google Scholar 

  11. S. Clyens, S.T.S. Al-Hassani, and W. Johnson: Int. J. Mech. Sci., 1976, vol. 18 (1), pp. 37–44.

    Article  Google Scholar 

  12. T. Alp, S.T.S. Al-Hassani, and W. Johnson: J. Eng. Mater. Technol., 1985, vol. 107, p. 109.

    Article  Google Scholar 

  13. W. Johnson, S. Clyens and S.T.S. Al-Hassani: Metallurgia Met. Form., 1976, vol. 43, p. 82.

    Google Scholar 

  14. M. Shakery, S.T.S. Al-Hassani, and T.J. Davis: Powder Metall. Int., 1979, vol. 11 (3), pp. 120–25.

    CAS  Google Scholar 

  15. D.R. Ervin, D.L. Bourell, C. Persad, and L. Rabenberg: Mater. Sci. Eng. A, 1988, vol. 102, pp. 25–30.

    Article  Google Scholar 

  16. S.L. Raghunathan, C. Persad, D.L. Bourell, and H.L. Marcus: Mater. Sci. Eng. A, 1991, vol. 131, pp. 243–53.

    Article  Google Scholar 

  17. A. Fais: Ph.D. Thesis, Turin Polytechnic, Turin, 2008.

  18. A. Fais and G. Maizza: J. Mater. Proc. Technol., 2008, vol. 202, pp. 70–75.

    Article  CAS  Google Scholar 

  19. A. Fais and P. Scardi: Z. Kristallogr. Suppl., 2008, vol. 27, pp. 37–44.

    Article  Google Scholar 

  20. P. Scardi and M. Leoni: Acta Cryst. A, 2001, vol. 57, pp. 604–13.

    Article  CAS  Google Scholar 

  21. P. Scardi and M. Leoni: Acta Cryst. A, 1002, vol. 58, pp. 190–200.

    Article  Google Scholar 

  22. M. Leoni and P. Scardi: J. Appl. Cryst., 2004, vol. 37, pp. 629–34.

    Article  CAS  Google Scholar 

  23. P. Scardi, in Powder Diffraction: Theory and Practice, R.E. Dinnebier and S.J.L. Billinge, eds., The Royal Society of Chemistry, Cambridge, United Kingdom, 2008, pp. 376–413.

    Chapter  Google Scholar 

  24. M. D’Incau, M. Leoni, and P. Scardi: J. Mater. Res., 2007, vol. 22, pp. 1744–53.

    Article  ADS  Google Scholar 

  25. M. D’Incau: Ph.D. Thesis, University of Trento, Trento, 2008.

  26. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, NY, 1974.

    Google Scholar 

  27. R.W. Cheary and A. Coelho: J. Appl. Cryst., 1992, vol. 25, pp. 109–21.

    Article  CAS  Google Scholar 

  28. M.A. Krivoglaz and K.P. Ryaboshapka: Fiz. Metall., 1963, vol. 15, pp. 18–28.

    CAS  Google Scholar 

  29. M. Wilkens: Phys. Status Solidi A, 1970, vol. 2, pp. 359–70.

    Article  ADS  Google Scholar 

  30. M. Wilkens: Fundamental Aspects of Dislocation Theory, J.A. Simmons, R. de Wit, and R. Bullough, eds., National Bureau of Standards (US) Special Publication No. 317, NBS, Washington, DC, vol. II, pp. 1195–1221.

  31. M. Leoni, J. Martinez-Garcia, and P. Scardi: J. Appl. Cryst., 2007, vol. 40, pp. 719–24.

    Article  CAS  Google Scholar 

  32. J. Martinez-Garcia, M. Leoni, and P. Scardi: Acta Cryst. A, 2009, vol. 65, pp. 109–19.

    Article  Google Scholar 

  33. R.A. Young: The Rietveld Method, Oxford University Press, Oxford, United Kingdom, 1993.

    Google Scholar 

  34. S. Kawamura and H. Kuwano: J. Jpn. Soc. Powder Metall., 2003, vol. 50 (7), pp. 545–50.

    CAS  Google Scholar 

  35. S. Kawaura, H. Kuwano, Y. Takeda, S. Takahashi, and H. Kaga: J. Jpn. Soc. Powder Metall., 2003, vol. 50 (12), pp. 1052–56.

    Google Scholar 

Download references

Acknowledgment

The authors thank Dr. M. Zadra for the precious support in the preparation of SPS components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Scardi.

Additional information

This article is based on a presentation given in the symposium “Neutron and X-Ray Studies of Advanced Materials,” which occurred February 15–19, 2009, during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scardi, P., D’incau, M., Leoni, M. et al. Dislocation Configurations in Nanocrystalline FeMo Sintered Components. Metall Mater Trans A 41, 1196–1201 (2010). https://doi.org/10.1007/s11661-009-9987-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9987-x

Keywords

Navigation