Skip to main content
Log in

Defect-Related Physical-Profile-Based X-Ray and Neutron Line Profile Analysis

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Diffraction line broadening is caused by different defects present in crystalline materials: (1) small coherent domains, (2) dislocations, (3) other types of microstrains, (4) twin boundaries, (5) stacking faults, (6) chemical inhomogeneities, and (7) grain-to-grain second-order internal stresses. Line profile analysis provides qualitative and quantitative information about defect types and densities, respectively. Line profiles can broaden, be asymmetric, and be shifted, and these features can be anisotropic in terms of hkl indices. A few thumb rules help qualitative selection of lattice defect types. If the breadths do not increase globally with hkl, the defects are of size type, i.e., either the domain size is small or twinning or faulting, or both, is present. Whenever the breadths increase globally, the defects produce microstrains. Physically based profile functions can be determined for the different defect types and hkl anisotropy. The qualitative input about defect types based on different experimental observations allows adequate quantitative evaluation of the densities of different defect types by using physically modeled profile functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.E. Warren: Progr. Met. Phys., 1959, vol. 8, pp. 147–202.

    Article  CAS  ADS  Google Scholar 

  2. J.G.M. Van Berkum, A.C. Vermeulen, R. Delhez, T.H. de Keijser, and E.J. Mittemeijer: J. Appl. Cryst., 1994, vol. 27, pp. 345–57.

    Article  Google Scholar 

  3. I. Lucks, P. Lamparter, and E.J. Mittemeijer: J. Appl. Cryst., 2004, vol. 37, pp. 300–11.

    Article  CAS  Google Scholar 

  4. M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  5. M. Wilkens: in Fundamental Aspects of Dislocation Theory, Special Publication No. 317, J.A. Simmons, R. de Wit, and R. Bullough, eds., U.S. National Bureau of Standards, Washington, DC, 1970, vol. II, pp. 1195–21.

  6. M. Wilkens: Phys. Status Solidi (a), 1970, vol. 2, pp. 359–70.

    Article  ADS  Google Scholar 

  7. I. Gaál: Proc. 5th Riso Int. Symp. Met. Mat. Sci., N.H. Andersen, M. Eldrup, N. Hansen, D. Juul-Jensen, T. Leffers, H. Lilholt, O.B. Pedersen, and B.N. Singh, eds., Risø National Laboratory, Roskilde, Denmark, 1984, pp. 245–54.

  8. I. Groma: Phys. Rev. B, 1998, vol. 57, pp. 7535–42.

    Article  CAS  ADS  Google Scholar 

  9. R. Barabash: Mater. Sci. Eng. A, 2001, vol. 309, pp. 49–54.

    Article  Google Scholar 

  10. B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sørensen, C. Gundlach, and W. Pantleon: Science, 2006, vol. 312, pp. 889–92.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. L.E. Levine, B.C. Larson, W. Yang, M.E. Kassner, J.Z. Tischler, and R. Fields: Nat. Mater., 2006, vol. 5, pp. 619–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. A. Leineweber and E.J. Mittemeijer: Adv. X-Ray Anal., 2003, vol. 46, pp. 43–49.

    CAS  Google Scholar 

  13. P. Scardi and M. Leoni: Acta Cryst., 2001, vol. A57, pp. 604–13.

    CAS  Google Scholar 

  14. T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.

    Article  Google Scholar 

  15. L. Balogh, G. Ribárik, and T. Ungár: J. Appl. Phys., 2006, vol. 100, pp. 023512–21.

    Article  ADS  Google Scholar 

  16. L. Balogh, G. Tichy, and T. Ungár: J. Appl. Cryst., 2009, vol. 42, pp. 580–91.

    Article  CAS  Google Scholar 

  17. P. Scardi and M. Leoni: J. Appl. Cryst., 1999, vol. 32, pp. 671–82.

    Article  CAS  Google Scholar 

  18. L. Velterop, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, and D. Reefman: J. Appl. Cryst., 2000, vol. 33, pp. 296–306.

    Article  CAS  Google Scholar 

  19. E. Estevez-Rams, M. Leoni, P. Scardi, B. Aragon-Fernandez, and H. Fuess: Philos. Mag., 2003, vol. 83, pp. 4045–57.

    Article  CAS  ADS  Google Scholar 

  20. P. Scherrer: Nachrichten Göttinger Gesellschaft, 1918, vol. 98, p. 394.

    Google Scholar 

  21. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  22. A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc., 1944, vol. 56, pp. 174–80.

    Article  CAS  ADS  Google Scholar 

  23. G.A. Caglioti, A. Paoletti, and F.P. Ricci: Nucl. Instrum., 1958, vol. 3, pp. 223–28.

    Article  CAS  Google Scholar 

  24. D.C. Gillies and D. Lewis: Powder Metall., 1968, vol. 11, pp. 400–07.

    CAS  Google Scholar 

  25. C.N.J. Wagner: TMS-AIME Conf. Ser., Gordon & Breach, New York, 1965, vol. 36.

  26. R. Kuzel, Jr. and P. Klimanek: J. Appl. Cryst., 1989, vol. 22, pp. 299–307.

    Article  CAS  Google Scholar 

  27. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–75.

    Article  ADS  Google Scholar 

  28. P. Cordier, T. Ungár, L. Zsoldos, and G. Tichy: Nature, 2004, vol. 428, pp. 837–40.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. J. Gubicza, S. Nauyoks, L. Balogh, J. Labar, T.W. Zerda, and T. Ungár: J. Mater. Res., 2007, vol. 22, pp. 1314–21.

    Article  CAS  ADS  Google Scholar 

  30. G. Ribárik, T. Ungár, and J. Gubicza: J. Appl. Cryst., 2001, vol. 34, pp. 669–76.

    Article  Google Scholar 

  31. CCP14: CMWP, www.renyi.hu/cmwp, unpublished research.

  32. P. Scardi and M. Leoni: Acta Cryst. A, 2002, vol. 58, pp. 190–200.

    Article  CAS  Google Scholar 

  33. B. Schönfeld, M.J. Portmann, S.Y. Yu, and G. Kostorz: Acta Mater., 1999, vol. 45, pp. 1413–16.

    Article  Google Scholar 

  34. E.F. Bertaut: Acta Cryst., 1950, vol. 3, pp. 14–18.

    Article  CAS  Google Scholar 

  35. A. Guinier: X-ray Diffraction, Freeman, San Francisco, CA, 1963, p. 418.

    Google Scholar 

  36. W.C. Hinds: Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, Wiley, New York, NY, 1982.

    Google Scholar 

  37. T. Ungár and G. Tichy: Phys. Status Solidi A, 1999, vol. 147, pp. 425–34.

    ADS  Google Scholar 

  38. A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár: J. Appl. Cryst., 2003, vol. 36, pp. 160–62.

    Article  Google Scholar 

  39. J. Martinez-Garcia, M. Leoni, and P. Scardi: Philos. Mag. Lett., 2008, vol. 88, pp. 443–51.

    Article  CAS  ADS  Google Scholar 

  40. E. Estevez-Rams, A. Penton-Madrigal, R. Lora-Serrano, and J. Martinez-Garcia: J. Appl. Cryst., 2001, vol. 34, pp. 730–36.

    Article  CAS  Google Scholar 

  41. N.E. Paton and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2839–47.

    CAS  Google Scholar 

  42. Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  43. B. Clausen, C.N. Tome, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456–68.

    Article  CAS  Google Scholar 

  44. L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 3699–707.

    Article  CAS  Google Scholar 

  45. W. Massa, S. Wocadlo, S. Lotz, and K.Z. Dehnicke: Anorg. Allg. Chem., 1990, vol. 589, pp. 79–88.

    Article  CAS  Google Scholar 

  46. M.M.J. Treacy, J.M. Newsam, and M.W. Deem: Proc. R. Soc. London A, 1991, vol. 433, pp. 499–520.

    Article  MATH  ADS  Google Scholar 

  47. K. Máthis, K. Nyilas, A. Axt, I.D. Cernatescu, T. Ungár, and P. Lukáč: Acta Mater., 2004, vol. 52, pp. 2889–94.

    Article  Google Scholar 

  48. K. Máthis, F. Chmelík, Z. Trojanová, P. Lukáč, and J. Lendvai: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 331–35.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Hungarian National Science Foundation OTKA Grant Nos. 71594 and 67692 for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Ungár.

Additional information

This article is based on a presentation given in the symposium “Neutron and X-Ray Studies of Advanced Materials,” which occurred February 15–19, 2009, during the TMS Annual Meeting in San Francisco, CA, under the auspices of TMS, TMS Structural Materials Division, TMS/ASM Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, and TMS: Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungár, T., Balogh, L. & Ribárik, G. Defect-Related Physical-Profile-Based X-Ray and Neutron Line Profile Analysis. Metall Mater Trans A 41, 1202–1209 (2010). https://doi.org/10.1007/s11661-009-9961-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9961-7

Keywords

Navigation