Evolution of Grain-Boundary Microstructure and Texture in Interstitial-Free Steel Processed by Equal-Channel Angular Extrusion

  • Ayan Bhowmik
  • Somjeet Biswas
  • Satyam Suwas
  • R.K. Ray
  • D. Bhattacharjee


The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 °C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Σ3 and Σ13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.


  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.CrossRefGoogle Scholar
  2. 2.
    F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan: Mater. Sci. Eng., A, 1999, vol. 387, pp. 809–16.Google Scholar
  3. 3.
    A. Vorhauer and R. Pippan: Scripta Mater., 2004, vol. 51, pp. 921–25.CrossRefGoogle Scholar
  4. 4.
    B. Cherukuri, T.S. Nedkova, and R. Srinivasan: Mater. Sci. Eng., A, 2005, vol. 410, pp. 394–97.CrossRefGoogle Scholar
  5. 5.
    B. Han and Z. Xu: Mater. Sci. Eng., A, 2007, vol. 447, pp. 119–24.CrossRefGoogle Scholar
  6. 6.
    N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–00.CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.CrossRefGoogle Scholar
  8. 8.
    V.M. Segal: Mater. Sci. Eng., A, 1995, vol. 197, pp. 157–64.CrossRefGoogle Scholar
  9. 9.
    F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, pp. 1135–46.CrossRefGoogle Scholar
  10. 10.
    R. Arruffat-Massion, S. Suwas, L.S. Tóth, W. Skrotzki, J.-J. Fundenberger, and A. Eberhardt: Mater. Sci. Forum, 2005, vol. 495, pp. 839–44.CrossRefGoogle Scholar
  11. 11.
    L.S. Tóth: Comput. Mater. Sci., 2005, vol. 32, pp. 568–76.CrossRefGoogle Scholar
  12. 12.
    S. Suwas, L.S. Tóth, J.J. Fundenberger, A. Eberhardt, and W. Skrotzki: Scripta Mater., 2003, vol. 49, pp. 1203–08.CrossRefGoogle Scholar
  13. 13.
    Y.T. Zhu, T.C. Lowe, and T.G. Langdon: Scripta Mater., 2004, vol. 51, pp. 825–30.CrossRefGoogle Scholar
  14. 14.
    I.J. Beyerlein, L.S. Tóth, C.N. Tome, and S. Suwas: Philos. Mag., 2007, vol. 87, pp. 885–906.CrossRefADSGoogle Scholar
  15. 15.
    S. Suwas, R. Arruffat-Massion, L.S. Tóth, J.J. Fundenburger, A. Eberhardt, and W. Skrotzki: Metall. Mater. Trans. A, 2007, vol. 37A, pp. 739–51.ADSGoogle Scholar
  16. 16.
    W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, and L.S. Tóth: Mater. Sci. Forum, 2006, vol. 503, pp. 99–106.CrossRefGoogle Scholar
  17. 17.
    L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, and S. Suwas: Acta Mater., 2004, vol. 52, pp. 1885–98.CrossRefGoogle Scholar
  18. 18.
    S. Suwas, L.S. Toth, J.J. Fundenberger, and A. Eberhardt: Solid-State Phenom., 2005, vol. 105, pp. 357–62.CrossRefGoogle Scholar
  19. 19.
    B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger: Acta Mater., 2007, vol. 56, pp. 200–14.CrossRefGoogle Scholar
  20. 20.
    S. Suwas, S. Biswas, S.D. Singh, and K. Chattopadhyay: Mater. Sci. Forum, 2008, vols. 584–586, pp. 585–90.CrossRefGoogle Scholar
  21. 21.
    S. Biswas, S.D. Singh, A. Bhowmik, and S. Suwas: Mater. Sci. Forum, 2008, vols. 584–586, pp. 343–48.CrossRefGoogle Scholar
  22. 22.
    S. Suwas, G. Gottstein, and R. Kumar: Mater. Sci. Eng., A, 2007, vol. 471, pp. 1–14.CrossRefGoogle Scholar
  23. 23.
    W. Skrotzki, B. Kloden, I. Hunsche, R. Chulist, S. Suwas, and L.S. Tóth: Mater. Sci. Forum, 2007, vols. 558–559, pp. 575–80.CrossRefGoogle Scholar
  24. 24.
    L. Dupuy and E.F. Rauch: Mater. Sci. Eng., A, 2002, vol. 337, pp. 241–47.CrossRefGoogle Scholar
  25. 25.
    R.J. McElroy and Z.C. Szkopiak: Int. Met. Rev., 1972, vol. 17, pp. 175–202.Google Scholar
  26. 26.
    A.W. Thompson: Metall. Trans. A, 1977, vol. 8A, pp. 833–42.ADSGoogle Scholar
  27. 27.
    J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Prog. Mater. Sci., 1980, vol. 25, pp. 69–412.CrossRefGoogle Scholar
  28. 28.
    K. Máthis and E.F. Rauch: Mater. Sci. Eng., A, 2007, vol. 462, pp. 248–52.CrossRefGoogle Scholar
  29. 29.
    S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2007, vol. 55, pp. 1017–32.CrossRefGoogle Scholar
  30. 30.
    S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, pp. 1087–1100.CrossRefGoogle Scholar
  31. 31.
    J. De Messemaeker, B. Verlinden, and J. Van Humbeeck: Acta Mater., 2005, vol. 53, pp. 4245–57.CrossRefGoogle Scholar
  32. 32.
    J.-P. Mathieu, S. Suwas, A. Ebarhardt, L.S. Toth, and P. Moll: J. Mater. Proc. Technol., 2006, vol. 173, pp. 29–33.CrossRefGoogle Scholar
  33. 33.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.CrossRefGoogle Scholar
  34. 34.
    S. Matthies and G.W. Vinel: Mater. Sci. Forum (Proc. ICOTOM-10), 1994, vols. 157–162, pp. 1641–46.Google Scholar
  35. 35.
    K. Pawlik: Phys. Status Solidi B, 1986, vol. 134, pp. 477–83.CrossRefGoogle Scholar
  36. 36.
    S.I. Wright: Mater. Sci. Technol., 2006, vol. 22 (11), pp. 1287–96.CrossRefGoogle Scholar
  37. 37.
    L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, and S. Suwas: Acta Mater., 2004, vol. 52, pp. 1885–98.CrossRefGoogle Scholar
  38. 38.
    D.A. Hughes and N. Hansen: Scripta Metall. Mater., 1995, vol. 33, pp. 315–21.CrossRefGoogle Scholar
  39. 39.
    D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.CrossRefGoogle Scholar
  40. 40.
    M. Cabbibo, W. Blum, E. Evangelista, M.E. Kassner, and M.A. Meyers: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 181–91.CrossRefADSGoogle Scholar
  41. 41.
    A. Sarkar, A. Bhowmik, and S. Suwas: Appl. Phys. A, 2009, vol. 94, pp. 943–48.CrossRefADSGoogle Scholar
  42. 42.
    N. Hansen: in Aluminium Alloys for Packaging, II, J.G. Morris, S.K. Das, and H.S. Goodrich, eds., TMS, Warrrendale, PA, 1996, pp. 129–44.Google Scholar
  43. 43.
    N. Hansen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2917–32.CrossRefGoogle Scholar
  44. 44.
    D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.CrossRefGoogle Scholar
  45. 45.
    A. Godfrey and D.A. Hughes: Acta Mater., 2000, vol. 48, pp. 1897–1905.CrossRefGoogle Scholar
  46. 46.
    D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: Acta Metall., 1964, vol. 12, pp. 813–25.CrossRefGoogle Scholar
  47. 47.
    M.L. Kronberg and F.H. Wilson: Metall. Trans., 1949, vol. 185, pp. 501–14.Google Scholar
  48. 48.
    D.G. Brandon: Acta Metall., 1966, vol. 12, pp. 1479–86.Google Scholar
  49. 49.
    T. Watanabe, H. Fujii, H. Oikawa, and K.I. Arai: Acta Metall., 1989, vol. 37, pp. 941–49.CrossRefGoogle Scholar
  50. 50.
    T. Watanabe, Y. Suzuki, S. Tahi, and H. Oikawa: Philos. Mag. Lett., 1991, vol. 62, pp. 9–17.CrossRefADSGoogle Scholar
  51. 51.
    S.Q. Cao, J.X. Zhang, J.S. Wu, L. Wang, and J.G. Chen: Mater. Sci. Eng., A, 2005, vol. 392, pp. 203–08.CrossRefGoogle Scholar
  52. 52.
    R. Saha and R.K. Ray: Scripta Mater., 2007, vol. 57, pp. 841–44.CrossRefGoogle Scholar
  53. 53.
    F.J. Humphreys and M. Hatherley: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, New York, NY, 2002, pp. 121–67.Google Scholar
  54. 54.
    V. Vitek, D.A. Smith, and R.C. Pond: Philos. Mag. A, 1980, vol. 41, pp. 649–61.CrossRefADSGoogle Scholar
  55. 55.
    T. Watanabe: Scripta Mater. Metall., 1992, vol. 27, pp. 1497–1502.CrossRefGoogle Scholar
  56. 56.
    T. Watanabe: Text. Microstruct., 1993, vol. 20, pp. 195–216.CrossRefGoogle Scholar
  57. 57.
    A. Garbacz and M.W. Grabski: Acta Mater. Metall., 1993, vol. 41, pp. 475–83.CrossRefGoogle Scholar
  58. 58.
    J. Baczynski and J.J. Jonas: Acta Mater. 1996, vol. 44, pp. 4273–88.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Ayan Bhowmik
    • 1
  • Somjeet Biswas
    • 1
  • Satyam Suwas
    • 1
  • R.K. Ray
    • 2
  • D. Bhattacharjee
    • 2
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.R&D DivisionTATA SteelJharkhandIndia

Personalised recommendations