Skip to main content
Log in

Phenomenological Model for Deformation-Induced Ferrite Transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A phenomenological model is proposed to describe the conditions under which an ultrafine ferrite (UFF) microstructure forms in low-alloyed steels as a result of deformation-induced ferrite transformation (DIFT). Assuming that corner points in the dislocation cell substructure of microshear bands provide suitable nucleation sites for ferrite, the model predicts that UFF forms in low-carbon steels independent of the steel chemistry and is promoted by increasing the strain rate. Analyzing ferrite growth rates suggests that the temperature range for UFF formation depends primarily on a minimum interfacial velocity criterion that must be fulfilled. In addition to these general trends, a more quantitative comparison of the model with experimental results for a Mo-containing steel is provided. This comparison suggests ferrite growth rates during DIFT that are somewhat larger than during conventional cooling transformation. These enhanced growth rates can be attributed to the presence of fast diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto: Steel Res. Int., 2005, vol. 76, pp. 514–20.

    CAS  Google Scholar 

  2. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito: Scripta Mater., 2002, vol. 46, pp. 305–10.

    Article  CAS  Google Scholar 

  3. P.D. Hodgson and H. Beladi: Mater. Sci. Forum, 2004, vols. 467–470, pp. 1137–44.

    Article  Google Scholar 

  4. R. Priestner and E. de los Rios: Met. Technol., 1980, vol. 7, pp. 309–16.

    CAS  Google Scholar 

  5. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.

    Article  CAS  Google Scholar 

  6. M.R. Hickson, R.K. Gibbs, and P.D. Hodgson: ISIJ Int., 1999, vol. 39, pp. 1176–80.

    Article  CAS  Google Scholar 

  7. P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1507–17.

    Article  ADS  CAS  Google Scholar 

  8. H. Yada, Y. Matsumura, and K. Nakajima: U.S. Patent No. 4,466,842, 1984.

  9. T. Morimoto, F. Yoshida, I. Chikushi, and J. Yanagimoto: ISIJ Int., 2007, vol. 47, pp. 1475–84.

    Article  CAS  Google Scholar 

  10. M.R. Hickson, P.J. Hurley, R.K. Gibbs, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1019–26.

    Article  ADS  CAS  Google Scholar 

  11. P.J. Hurley and P.D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 1360–68.

    CAS  Google Scholar 

  12. H. Beladi, A. Zarei-Hanzaki, G.L. Kelly, and P.D. Hodgson: Mater. Sci. Technol., 2004, vol. 20, pp. 213–20.

    Article  CAS  Google Scholar 

  13. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng., 2004, vol. A371, pp. 343–52.

    CAS  Google Scholar 

  14. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng., 2004, vol. A367, pp. 152–61.

    CAS  Google Scholar 

  15. S.C. Hong, S.H. Lim, K.J. Lee, D.H. Shin, and K.S. Lee: ISIJ Int., 2003, vol. 43, pp. 394–99.

    Article  CAS  Google Scholar 

  16. S.C. Hong and K.S. Lee: Mater. Sci. Eng., 2002, vol. A323, pp. 148–59.

    CAS  Google Scholar 

  17. J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um, and W.Y. Choo: ISIJ Int., 2003, vol. 43, pp. 746–54.

    Article  CAS  Google Scholar 

  18. K. Mukherjee, S. Hazra, and M. Militzer: Iron Steel, 2005, vol. 40, suppl., pp. 211–16.

    Google Scholar 

  19. K. Mukherjee, S. Hazra, and M. Militzer: Proc. SAE 2006 World Congr., SAE International, SP-2035, Detroit, MI, 2006, pp. 81–86.

  20. S.C. Hong, S.H. Lim, K.S. Hong, K.J. Lee, D.H. Shin, and K.S. Lee: Mater. Sci. Eng., 2003, vol. A355, pp. 241–48.

    CAS  Google Scholar 

  21. M.M. Tong, J. Nui, Y.T. Zhang, D.Z. Li, and Y.Y. Li: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1565–77.

    Article  ADS  CAS  Google Scholar 

  22. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  23. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom,1982, p. 21.

    Google Scholar 

  24. D. Liu, F. Fazeli, and M. Militzer: ISIJ Int., 2007, vol. 47, pp. 1789–98.

    Article  CAS  Google Scholar 

  25. Y. Brechet and C.R. Hutchinson: Solid State Physics—Advances in Research and Applications, Academic Press, New York, 2006, vol. 60, pp. 181–287.

  26. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003–05.

    Article  PubMed  ADS  CAS  Google Scholar 

  27. G.P. Krielaart and S. van der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Militzer.

Additional information

Manuscript submitted December 17, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Militzer, M., Brechet, Y. Phenomenological Model for Deformation-Induced Ferrite Transformation. Metall Mater Trans A 40, 2273–2282 (2009). https://doi.org/10.1007/s11661-009-9926-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9926-x

Keywords

Navigation