Skip to main content
Log in

Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.R. Moody, S.L. Robinson, and W.M. Garrison: Res. Mech., 1990, vol. 30, pp. 143–206.

    CAS  Google Scholar 

  2. H.G. Nelson: in Treatise on Materials Science and Technology: Embrittlement of Engineering Alloys, C.L. Briant and S.K. Banerji, eds., Academic Press, New York, NY, 1983, vol. 25, pp. 275–359.

  3. A.W. Thompson and I.M. Bernstein: in Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1980, vol. 7, pp. 53–175.

  4. G.R. Caskey: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 822–62.

    Google Scholar 

  5. J.A. Brooks and A.W. Thompson: Int. Mater. Rev., 1991, vol. 36, pp. 16–44.

    CAS  Google Scholar 

  6. J.A. Brooks and A.J. West: Metall. Trans. A, 1981, vol. 12A, pp. 213–23.

    ADS  Google Scholar 

  7. J.A. Brooks, A.J. West, and A.W. Thompson: Metall. Trans. A, 1983, vol. 14A, pp. 75–84.

    ADS  Google Scholar 

  8. M.I. Luppo, A. Hazarabedian, and J. Ovejero-Garcia: Corros. Sci., 1999, vol. 41, pp. 87–103.

    Article  CAS  Google Scholar 

  9. M.J. Morgan, G.K. Chapman, M.H. Tosten, and S.L. West: Trends in Welding Research: Proc. 7th Int. Conf., ASM INTERNATIONAL, Materials Park, OH, 2006, pp. 743–48.

  10. A.M. Nasreldin, M.M.A. Gad, I.T. Hassan, M.M. Ghoneim, and A.A. El-Sayed: J. Mater. Sci. Technol., 2001, vol. 17, pp. 444–48.

    CAS  Google Scholar 

  11. C. Pan, Y.J. Su, W.Y. Chu, Z.B. Li, D.T. Liang, and L.J. Qiao: Corros. Sci., 2002, vol. 44, pp. 1983–93.

    Article  CAS  Google Scholar 

  12. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 1997, vol. 03.01, pp. 968–91.

  13. C. SanMarchi, B.P. Somerday, and S.L. Robinson: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 100–16.

    Article  CAS  Google Scholar 

  14. K.A. Nibur, B.P. Somerday, D.K. Balch, and C. SanMarchi: Acta Mater., 2009, vol. 57, pp. 3795–3809.

    Article  CAS  Google Scholar 

  15. D.J. Kotecki and T.A. Siewert: Weld. J., 1992, vol. 71, pp. 171s–178s.

    Google Scholar 

  16. C. SanMarchi, B.P. Somerday, J. Zelinski, X. Tang, and G.H. Schiroky: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2763–75.

    Article  ADS  CAS  Google Scholar 

  17. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol. A176, pp. 191–202.

    Google Scholar 

  18. M. Menard, J.M. Olive, A.-M. Brass, and I. Aubert: in Environment-Induced Cracking of Materials: Chemistry, Mechanics and Mechanisms, S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Rebak, eds., Elsevier, Oxford, United Kingdom, 2008, vol. 1, pp. 179–88.

  19. K.A. Nibur, D.F. Bahr, and B.P. Somerday: Acta Mater., 2006, vol. 54, pp. 2677–84.

    Article  CAS  Google Scholar 

  20. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92.

    Article  Google Scholar 

  21. C. SanMarchi, K.A. Nibur, D.K. Balch, and B.P. Somerday: J. Pressure Vessel Technol., 2008, vol. 130, art. no. 041401, 9 pp.

  22. J.P. Hirth: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 1990, pp. 677–85.

    Google Scholar 

  23. J.P. Hirth: in Hydrogen Effects in Materials, A.W. Thompson and N.R. Moody, eds., TMS, Warrendale, PA, 1996, pp. 507–22.

    Google Scholar 

  24. P. Sofronis and H.K. Birnbaum: J. Mech. Phys. Solids, 1995, vol. 43, pp. 49–90.

    Article  MATH  ADS  Google Scholar 

  25. Y. Liang, P. Sofronis, and N. Aravas: Acta Mater., 2003, vol. 51, pp. 2717–30.

    Article  CAS  Google Scholar 

  26. P. Sofronis and R.M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, pp. 317–50.

    Article  ADS  Google Scholar 

  27. Y. Liang and P. Sofronis: Modell. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 523–51.

    Article  ADS  CAS  Google Scholar 

  28. H. Peisl: in Topics in Applied Physics: Hydrogen in Metals I, G. Alefeld and J. Volkl, eds., Springer-Verlag, New York, NY, 1978, vol. 28, pp. 53–74.

  29. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  30. R.B. McLellan: Acta Metall., 1979, vol. 27, pp. 1655–63.

    Article  CAS  Google Scholar 

  31. J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards: Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    ADS  CAS  Google Scholar 

  32. J.J. Gilman: Micromechanics of Flow in Solids, McGraw-Hill, New York, NY, 1969.

    Google Scholar 

  33. P. Sofronis, Y. Liang, and N. Aravas: Eur. J. Mech., A/Solids, 2001, vol. 20, pp. 857–72.

    Article  MATH  Google Scholar 

  34. Y. Liang, P. Sofronis, D.C. Ahn, R. Dodds, and D. Bammann: Mech. Mater., 2008, vol. 40, pp. 115–32.

    Article  Google Scholar 

  35. J.R. Rice: Proc. 14th Int. Congr. on Theoretical and Applied Mechanics, North-Holland Publishing, Delft, The Netherlands, 1977, pp. 207–20.

  36. D.C. Ahn, P. Sofronis, and R.H. Dodds: Int. J. Fract., 2007, vol. 145, pp. 135–57.

    Article  CAS  Google Scholar 

  37. J.P. Hirth and B. Carnahan: Acta Metall., 1978, vol. 26, pp. 1795–1803.

    Article  CAS  Google Scholar 

  38. G.J. Thomas: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, pp. 77–84.

    Google Scholar 

Download references

Acknowledgments

Weld was fabricated by G. Gibbs and electron microscopy was conducted by J. Chames and R. Nishimoto. The authors gratefully acknowledge support from the United States Department of Energy (Contract No. DE AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.P. Somerday.

Additional information

Manuscript submitted July 22, 2008.

C.H. CADDEN deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somerday, B., Dadfarnia, M., Balch, D. et al. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds. Metall Mater Trans A 40, 2350–2362 (2009). https://doi.org/10.1007/s11661-009-9922-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9922-1

Keywords

Navigation