Skip to main content
Log in

The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure

  • Symposium: Materials for the Nuclear Renaissance
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercially available molybdenum and oxide dispersion strengthened (ODS) molybdenum produced by powder metallurgy (PM) methods were subjected to tensile testing, fracture toughness testing, and examination of the toughening mechanism. Both PM and ODS molybdenum have an equiaxed grain size that is larger in scale than comparable wrought products. This results in lower tensile strength and a higher tensile ductile-to-brittle transition temperature (DBTT) for PM and ODS molybdenum compared to wrought product forms. Although the grain size for PM molybdenum is large and the oxygen content is relatively high, both attributes tending to embrittle molybdenum, the transition temperature and fracture toughness values are comparable to those observed for wrought molybdenum. Crack initiation at grain boundaries and the center of grains where pores are present were observed to leave ligaments for the PM molybdenum that are similar in scale to those observed for wrought molybdenum. This is a similar toughening mechanism to the ductile laminate mechanism observed for wrought molybdenum. The larger oxide particle size for PM ODS molybdenum produces larger cracks that result in lower fracture toughness values and a higher DBTT in comparison to PM molybdenum. The impact of the grain size, grain shape, and oxide particles on the toughening mechanism and resulting properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.B. Lambert and J.J. Rausch: Materials Handbook, vol. 2, Non-Ferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 557–82.

  2. J. Wadsworth: JOM, 2007, vol. 59 (2), pp. 41–47.

    Article  MathSciNet  CAS  Google Scholar 

  3. R.E. Gold and D.L. Harrod: J. Nucl. Mater., 1979, vols. 85–86, pp. 805–15.

    Article  Google Scholar 

  4. B.L. Cox and F.W. Wiffen: J. Nucl. Mater., 1979, vols. 85–86, pp. 901–05.

    Article  Google Scholar 

  5. J. Wadsworth, T.G. Nieh, and J. J. Stephens: Int. Mater. Rev., 1988, vol. 33 (3), pp. 131–50.

    CAS  Google Scholar 

  6. B.A. Wilcox and A. Gibert: in Refractory Metals and Alloys IV—Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 95–115.

    Google Scholar 

  7. A. Lawley: in Refractory Metals and Alloys IV— Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 141–60.

    Google Scholar 

  8. B.S. Lemet and K. Kreder: in Refractory Metals and Alloys IV—Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 161–83.

    Google Scholar 

  9. H. Kurishita, A. Oishi, H. Kubo, and H. Yoshinaga: Trans. J. Inst. Met., 1985, vol. 26 (5), pp. 341–52.

    Google Scholar 

  10. H. Kurishita and H. Yoshinaga: Mater. Forum, 1989, vol. 13, pp. 161–73.

    CAS  Google Scholar 

  11. S. Tsurelawa, T. Tanaka, and H. Yoshinaga: Mater. Sci. Eng., 1994, vol. A176, pp. 341–48.

    Google Scholar 

  12. A. Kumar and B.L. Eyre: Proc. R. Soc. London, 1980, vol. A370, pp. 431–58.

    ADS  Google Scholar 

  13. B.V. Cockeram: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3685–3707.

    Article  CAS  Google Scholar 

  14. B.V. Cockeram: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1777–91.

    Article  CAS  Google Scholar 

  15. B.V. Cockeram: Mater. Sci. Eng., A, 2006, vol. 418, pp. 120–36.

    Article  CAS  Google Scholar 

  16. B.V. Cockeram and K.S. Chan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2045–67.

    Article  ADS  CAS  Google Scholar 

  17. M. Semchyshen and R.Q. Barr: J. Less Common Met., 1966, vol. 11, pp. 1–13.

    Article  CAS  Google Scholar 

  18. C. Grandhi and M.F. Ashby: Acta Metall., 1979, vol. 27, pp. 1565–1602.

    Article  Google Scholar 

  19. J.C. Thornley and A.S. Wronski: Acta Metall., 1970, vol. 18, pp. 1053–62.

    Article  CAS  Google Scholar 

  20. A.A. Johnson, S.P. Gupta, and S.P. Kodali: Mater. Sci. Eng., 1975, vol. 18, pp. 159–61.

    Article  CAS  Google Scholar 

  21. S. Morozumi: Proc. Mechanical Properties of Bcc Metals, TMS-AIME, Warrendale, PA, 1982, pp. 197–205.

    Google Scholar 

  22. A. Lawley, J. Van den Sype, and R. Maddin: J. Inst. Met., 1962–1963, vol. 91, pp. 23–27.

  23. G.W. Brock: Trans. AIME, 1961, vol. 221, pp. 1055–62.

    CAS  Google Scholar 

  24. W.D. Klopp: J. Less Common Met., 1975, vol. 42 pp. 261–78.

    Article  CAS  Google Scholar 

  25. J. Wadsworth, T.G. Nieh, and J.J. Stephens: Scripta Metall., 1986, vol. 20, pp. 637–42.

    Article  CAS  Google Scholar 

  26. M. Scibetta, R. Chaouadi, and J.L. Puzzolante: J. Nucl. Mater., 2000, vols. 283–287, pp. 455–60.

    Article  Google Scholar 

  27. J.A. Shields, P. Lipetzky, and A.J. Mueller: Proc. 15th Int. Plansee Seminar, G. Kneringer, P. Rodhammer, and H. Wildner, eds., Plansee Holding AG, Reutte, Austria, 2001, vol. 4, pp. 187–99.

  28. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2393–2402.

    Article  ADS  CAS  Google Scholar 

  29. G. Zhang, Y. Sun, C. Zuo, J. Wei, and J. Sun: Mater. Sci. Eng., A, 2008, vols. 483–484, pp. 350–52.

    Google Scholar 

  30. L. Wang, Y. Sun, J. Luo, Y. Zhu, and P. Niu: Mater. Sci. Forum, 2007, vols. 534–536, pp. 1265–68.

    Article  Google Scholar 

  31. D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jehanno, B. Skrotzki, and H. Saage: Mater. Sci. Eng., A, 2007, vol. 463, pp. 107–14.

    Article  CAS  Google Scholar 

  32. I.M. Gunter, J.H. Schneibel, and J.J. Kruzic: Mater. Sci. Eng., A, 2007, vol. 458, pp. 275–80.

    Article  CAS  Google Scholar 

  33. D.L. Chen, B. Weiss, R. Stickler, M. Witwer, G. Leichtfried, and H. Hödl: High Temp. Mater. Processes, 1994, vol. 13, pp. 75–85.

    CAS  Google Scholar 

  34. D.L. Chen, B. Weiss, R. Stickler, M. Witwer, and G. Leichtfried: Proc. 13th Int. Plansee Seminar, H. Bildstein and R. Eck, eds., Metallwerk Plansee, Reutte, Austria, 1993, vol. 1, pp. 621–31.

  35. A.Yu. Koval, A.D. Vasilev, and S.A. Firstov: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 223–26.

    Article  CAS  Google Scholar 

  36. M. Danylenko: Modeling the Mechanical Response of Structural Materials, E.M. Taleff and R.K. Mahidhara, eds., TMS, Warrendale, PA, 1997, pp. 229–35.

  37. M. Rödig, H. Derz, G. Pott, and B. Werner: Proc. 14th Int. Plansee Seminar, G. Kneringer, P. Rödhammer, and P. Wilharitz, eds., Metallwerk Plansee, Reutte, Austria, 1997, vol. 1, pp. 781–91.

  38. C.W. Marschall and F.C. Holden: High Temperature Refractory Metals, Gordon-Breach Science Publishers, New York, NY, 1964, pp. 129–59.

    Google Scholar 

  39. H.E. Romine: Fracture Toughness at Room Temperature of Some Refractory Metals Based on Tungsten, Molybdenum or Columbium Which Are Being Considered for Use in the Nozzles of Large Solid Propellant Rockets, NWL Report No. 1873, U.S. Naval Weapons Laboratory, Dahlgren, VA, 1963.

  40. K.S. Chan: Metall. Trans. A, 1989, vol. 20A, pp. 155–64.

    ADS  CAS  Google Scholar 

  41. K.S. Chan: Metall. Trans. A, 1989, vol. 20A, pp. 2337–44.

    ADS  CAS  Google Scholar 

  42. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A., 1988, vol. 19A, pp. 549–61.

    ADS  Google Scholar 

  43. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. AIME, 1967, vol. 239, pp. 114–18.

    CAS  Google Scholar 

  44. S. Yokoshima and M. Yamaguchi: Acta Metall., 1996, vol. 44 (3), pp. 873–83.

    CAS  Google Scholar 

  45. R.R. Adharapurapu, K.S. Vecchio, A. Rohatgi, and F. Jiang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3217–36.

    Article  CAS  Google Scholar 

  46. R. Bianco, R.W. Buckman, Jr., and C.B. Geller: High Strength, Creep-Resistant Molybdenum Alloy and Process for Producing the Same, U.S. Patent No. 5,868,876, Feb. 9, 1999.

  47. A.J. Mueller, J.A. Shields, and R.W. Buckman, Jr.: Proc. 15th Int. Plansee Seminar, G. Kneringer, P. Rodhammer, and H. Wildner, eds., Plansee Holding AG, Reutte, Austria, 2001, vol. 1, pp. 485–97.

  48. “ASTM E399-90 Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1997.

  49. “ASTM E1820-01 Standard Test Method for Measurement of Fracture Toughness,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2001.

  50. “ASTM E8-00 Standard Test Method for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2001.

  51. “ASTM E21-98 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1998.

  52. W.C. Coons: The Metal Molybdenum, ASM INTERNATIONAL, Materials Park, OH, 1958, p. 394.

    Google Scholar 

  53. S. Suresh and J.R. Brockenbrough: Acta Metall., 1988, vol. 36, pp. 1455–70.

    Article  CAS  Google Scholar 

  54. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., John Wiley & Sons, New York, NY, 1983, pp. 269–348.

    Google Scholar 

  55. Z. Jiuxing, L. Lu, Z. Meiling, H. Yancao, and Z. Tieyong: Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 405–09.

    Article  CAS  Google Scholar 

  56. A. Saxena, D.C. Daly, H.A. Ernst, and K. Banerji: Fracture Mechanics: 21st Symp., ASTM STP 1074, J.P. Gudas, J.A. Joyce, and E.M. Hackett, eds., ASTM, West Conshohocken, PA, 1990, pp. 378–95.

  57. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  MATH  ADS  Google Scholar 

  58. J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported under United States Department of Energy Contract No. DE-AC11-98PN38206. The advice and review of W.J. Mills, R.W. Smith, and J.E. Hack are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.V. Cockeram.

Additional information

This article is based on a presentation given in the symposium “Materials for the Nuclear Renaissance,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of Corrosion and Environmental Effects and the Nuclear Materials Committees of ASM-TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockeram, B. The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure. Metall Mater Trans A 40, 2843–2860 (2009). https://doi.org/10.1007/s11661-009-9919-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9919-9

Keywords

Navigation