Skip to main content
Log in

Texture Evolution and Associated Nucleation and Growth Mechanisms during Annealing of a Zr Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the crystallographic texture in a Zr-2Hf alloy has been followed during deformation, primary recrystallization, and subsequent normal grain growth. The rolling textures (from 50 to 90 pct strain) are constituted of two partial orientation fibers, D f  = {hkil}\( \langle 10\bar{1}0\rangle \) and R f  = {hkil}\( \langle 11\bar{2}0\rangle , \) along which the two main orientations are the so-called “tilted” {0001}\( \langle 10\bar{1}0\rangle \) and tilted {0001}\( \langle 11\bar{2}0\rangle \) texture components for which the {0001} poles are approximately 25 deg away from the specimen normal direction (ND). A decrease in the intensity of the D f fiber and a continuous increase in the intensity of the R f fiber take place during primary recrystallization and normal grain growth. An analysis of the neutron diffraction line profiles reveals a stored energy (SE) difference between the main orientations of these two texture fibers after deformation. These observations as well as some considerations about the possible active deformation systems and some partial observations of the nucleation and growth states allow us to propose possible mechanisms to explain the observed texture evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. OIM is a trademark of TSL Co., Draper, UT.

References

  1. A. Jägger, P. Lukáč, V. Gärtnerová, J. Haloda, and M. Dopita: Mater. Sci. Eng., A, 2006, vol. 432A, pp. 20–25.

    Google Scholar 

  2. M. Billion and J.P. Langeron: 9 ème Colloque de Métallurgie, Saclay, France, 1966, pp. 97–103.

    Google Scholar 

  3. G.T. Higgins: Trans. AIME, 1966, vol. 236, pp. 1759–64.

    Google Scholar 

  4. H.J. Bunge and C.U. Nauer-Gerhardt: Titanium Science and Technology, DGM, Frankfurt, Germany, 1985, vol. 3, p. 1713.

    Google Scholar 

  5. H. Hu and C. Cline: Trans. AIME, 1968, vol. 242, pp. 1013–24.

    CAS  Google Scholar 

  6. R.K. Mc Geary and B. Lustmann: Trans. AIME, 1953, vol. 197, pp. 197–284.

    Google Scholar 

  7. P. Ganesan, K. Okazaski, and H. Conrad: Metall. Trans. A, 1979, vol. 10A, pp. 1021–29.

    ADS  CAS  Google Scholar 

  8. F. Wagner, N. Bozzolo, O. Van Landuyt, and T. Grosdidier: Acta Mater., 2002, vol. 50, pp. 1245–59.

    Article  CAS  Google Scholar 

  9. N. Bozzolo, F. Wagner, N. Dewobroto, and T. Grosdidier: Mater. Sci. Forum, 2002, vol. 408, pp. 901–06.

    Article  Google Scholar 

  10. N. Bozzolo, N. Dewobroto, T. Grosdidier, and F. Wagner: Mater. Sci. Eng., A, 2005, vol. A397, pp. 346–55.

    CAS  Google Scholar 

  11. P. Gerber, J. Tarasiuk, T. Chauveau, and B. Bacroix: Acta Mater., 2003, vol. 51, pp. 6359–71.

    Article  CAS  Google Scholar 

  12. G. Guiglionda, A. Borbély, and J.H. Driver: Acta Mater., 2004, vol. 52, pp. 3413–23.

    Article  CAS  Google Scholar 

  13. T. Baudin, D. Solas, A.L. Etter, D. Ceccaldi, and R. Penelle: Scripta Mater., 2004, vol. 51, pp. 427–30.

    Article  CAS  Google Scholar 

  14. N. Rajmohan and J.A. Szpunar: Acta Mater., 2000, vol. 48, pp. 3327–40.

    Article  CAS  Google Scholar 

  15. H. Francillette, B. Bacroix, M. Gasperini, and J.L. Bechade: Acta Mater., 1998, vol. 46, pp. 4131–42.

    Article  CAS  Google Scholar 

  16. K.Y. Zhu, D. Chaubet, B. Bacroix, and F. Brisset: Acta Mater., 2005, vol. 53, pp. 5131–40.

    Article  CAS  Google Scholar 

  17. J. Rodriguez-Carvajal: Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congr. IUC, Toulouse, France, 1990, p. 127.

    Google Scholar 

  18. G.R. Stibitz: Phys. Rev., 1937, vol. 49, pp. 872–83.

    Google Scholar 

  19. D. Chaubet, B. Bacroix, and J.L. Béchade: Mater. Sci. Forum, 2002, vol. 408, pp. 797–802.

    Article  Google Scholar 

  20. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1996, p. 99.

    Google Scholar 

  21. N. Dewobroto, N. Bozzolo, P. Barberis, and F. Wagner: Int. J. Mater. Res., 2006, vol. 97, pp. 826–33.

    CAS  Google Scholar 

  22. O. Castelnau, H. Francillette, B. Bacroix, and R.A. Lebensohn: J. Nucl. Mater., 2001, vol. 297, pp. 14–26.

    Article  ADS  CAS  Google Scholar 

  23. B. Bacroix, A. Miroux, and O. Castelnau: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 851–64.

    Article  ADS  CAS  Google Scholar 

  24. R. Brenner, J.L. Bechade, O. Castelnau, and B. Bacroix: J. Nucl. Mater., 2002, vol. 305, pp. 175–86.

    Article  ADS  CAS  Google Scholar 

  25. T. Ungár, O. Castelnau, G. Ribárik, M. Drakopoulos, J.L. Béchade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, and B. Bacroix: Acta Mater., 2007, vol. 55, pp. 1117–27.

    Article  Google Scholar 

  26. O. Castelnau, R. Brenner, and R.A. Lebensohn: Acta Mater., 2006, vol. 54, pp. 2745–56.

    Article  CAS  Google Scholar 

  27. B. Bacroix, R. Brenner, K. Zhu, H. Réglé, A. Wauthier, D. Chaubet, and O. Castelnau: Mater. Sci. Forum, 2007, vols. 558–559, pp. 45–52.

    Article  Google Scholar 

  28. G. Ibe and K. Lücke: Recrystallization, Grain Growth and Textures, ASM, Metals Park, OH, 1966, pp. 434–45.

    Google Scholar 

  29. K.Y. Zhu, B. Bacroix, T. Chauveau, D. Chaubet, and O. Castelnau: Mater. Sci. Forum, 2007, vol. 550, pp. 545–50.

    Article  CAS  Google Scholar 

  30. K. Piękos, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix: Comp. Mater. Sci., 2008, vol. 42, pp. 584–94.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge gratefully the financial support from the Conseil Général de Seine Saint Denis (Bobigny, France). The authors are also grateful to Dr. M.-H. Mathon, CEA, for the neutron diffraction measurements; Dr. J.L. Béchade, CEA, for providing the material used in this study; and Dr. A. Vassel, Office National d’Etudes et Recherches Aérospatiales (ONERA) (Chatillon, France), for fruitful discussions on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bacroix.

Additional information

Manuscript submitted November 10, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Bacroix, B., Chauveau, T. et al. Texture Evolution and Associated Nucleation and Growth Mechanisms during Annealing of a Zr Alloy. Metall Mater Trans A 40, 2423–2434 (2009). https://doi.org/10.1007/s11661-009-9909-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9909-y

Keywords

Navigation