Skip to main content
Log in

Approaches to Modeling Diffuse Scattering from Molecular Crystals: Para-Terphenyl (C18H14)

  • Symposium: Neutron and X-Ray Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 18 July 2009

Abstract

Diffuse scattering is a probe of the local correlations in a crystal, whereas Bragg peaks are descriptive of the average long-range ordering. The long-range average is the result of numerous local configurations the population of which cannot be determined from the Bragg peaks. Diffuse scattering can examine this population. This is particularly the case when making use of the three-dimensional distribution of diffuse scattering from single crystals. However, diffuse scattering is very weak and broad and is often of similar intensity to the experimental background, which makes data collection demanding. Disorder can also take many forms and local configurations are not constrained by the average crystallographic symmetry. Here, three approaches to the modeling of diffuse scattering from molecular crystals will be discussed. All three approaches are based on a Monte Carlo (MC) simulation. As an example, the modeling of neutron diffuse scattering from para-terphenyl (PTP, C18H14) will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.R. Welberry: Diffuse X-Ray Scattering and Models of Disorder, Oxford University Press, Oxford, United Kingdom, 2004.

    Google Scholar 

  2. T.R. Welberry, D.J. Goossens, W.I.F. David, M.J. Gutmann, M.J. Bull, and A.P. Heerdegen: J. Appl. Crystallogr., 2003, vol. 36, pp. 1440–47.

    Article  CAS  Google Scholar 

  3. D.A. Keen, M.J. Harris, and W.I.F. David: Physica B, 1998, vols. 241–243, pp. 201–03.

    Google Scholar 

  4. D. Hohlwein, J.-U. Hoffmann, and R. Schneider: Phys. Rev. B, 2003, vol. 68, pp. 140408-1–140408-4.

    Article  ADS  Google Scholar 

  5. W. Schweika and P. Boni: Physica B, 2001, vol. 297, pp. 155–59.

    Article  CAS  ADS  Google Scholar 

  6. W. Schweika: Disordered Alloys: Diffuse Scattering and Monte Carlo Simulations, Springer Verlag, New York, NY, 1998.

    MATH  Google Scholar 

  7. M.A. Estermann and W. Steurer: Phase Transitions, 1998, vol. 67, pp. 165–95.

    Article  CAS  Google Scholar 

  8. S. Scheidegger, M.A. Estermann, and W. Steurer: J. Appl. Crystallogr., 2000, vol. 33, pp. 35–48.

    Article  CAS  Google Scholar 

  9. D.A. Keen, M.J. Gutmann, and C.C. Wilson: J. Appl. Crystallogr., 2006, vol. 39, pp. 714–22.

    Article  CAS  Google Scholar 

  10. G.M. Day, W.D.S. Motherwell, H.L. Ammon, S.X.M. Boerrigter, R.G.D. Valle, E. Venuti, A. Dzyabchenko, J.D. Dunitz, B. Schweizer, B.P. van Eijck, P. Erk, J.C. Facelli, V.E. Bazterra, M.B. Ferraro, D.W.M. Hofmann, F.J.J. Leusen, C. Liang, C.C. Pantelides, P.G. Karamertzanis, S.L. Price, T.C. Lewis, H. Nowell, A. Torrisi, H.A. Scheraga, Y.A. Arnautova, M.U. Schmidt, and P. Verwer: Acta Crystallogr., 2005, vol. B61, pp. 511–27.

    CAS  Google Scholar 

  11. B.D. Butler and T.R. Welberry: J. Appl. Crystallogr., 1992, vol. 25, pp. 391–99.

    Article  Google Scholar 

  12. Th. Proffen and R.B. Neder: J. Appl. Crystallogr., 1997, vol. 30, pp.171–75.

    Article  CAS  Google Scholar 

  13. W.J. Hehre, L. Radom, P.R. Schleyer, and J.A. Pople: Ab Initio Molecular Orbital Theory, John Wiley, New York, NY, 1986.

    Google Scholar 

  14. I. Tanaka, F. Iwasaki, and A. Aihara: Acta Crystallogr., 1974, vol. B30, pp. 1546–49.

    Google Scholar 

  15. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–92.

    Article  CAS  ADS  Google Scholar 

  16. L.H. Thomas, T.R. Welberry, D.J. Goossens, A.P. Heerdegen, M.J. Gutmann, S.J. Teat, C.C. Wilson, P.L. Lee, and J.M. Cole: Acta Crystallogr., 2007, vol. B63, pp. 663–73.

    CAS  Google Scholar 

  17. H.M. Rietveld, E.N. Maslen, and C.J.B. Clews: Acta Crystallogr., 1970, vol. B26, pp. 693–706.

    Google Scholar 

  18. P.J.-L. Baudour, Y. Délugeard, and H. Cailleau: Acta Crystallogr., 1976, vol. B32, pp. 150–54.

    CAS  Google Scholar 

  19. P.J.-L. Baudour and G.-P. Charbonneau: Acta Crystallogr., 1974, vol. B30, pp. 1379–79.

    Google Scholar 

  20. P.J.-L. Baudour, H. Cailleau, and W.B. Yelon: Acta Crystallogr., 1977, vol. B33, pp. 1773–80.

    CAS  Google Scholar 

  21. D.J. Goossens, A.G. Beasley, T.R. Welberry, M.J. Gutmann, and R.O. Piltz: J. Phys.: Condens. Matter, 2009, vol. 21, p. 124204-1–124204-10.

    ADS  Google Scholar 

  22. D.J. Goossens and M.J. Gutmann: Phys. Rev. Lett., 2009, vol. 102, pp. 015505-1–015505-4.

    Article  ADS  Google Scholar 

  23. T.R. Welberry and S.L. Mair: J. Phys. C: Solid State Phys., 1987, vol. 20, pp. 4773–81.

    Article  CAS  ADS  Google Scholar 

  24. R.E. Lechner, B. Toudic, and H. Cailleau: J. Phys. C: Solid State Phys., 1984, vol. 17, pp. 405–20.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support of the Australian Research Council (The Commonwealth of Australia, Canberra, ACT, Australia), the Australian Synchrotron Research Program (Clayton, VIC, Australia) the Access to Major Research Facilities Program (Australian Nuclear Science and Technology Organisation, Menai, NSW, Australia), the Australian Partnership for Advanced Computing (The Australian National University, Canberra, ACT, Australia), and the Australian Institute for Nuclear Science and Engineering (Grant No. AINGR05199, Menai, NSW, Australia). The authors also thank A.P. Heerdegen for contributions to many aspects of this work, M.J. Gutmann for contributions to the PTP study, and L.H. Thomas for contributions to the PCNB study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.J. Goossens.

Additional information

This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11661-009-9972-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goossens, D., Welberry, T. Approaches to Modeling Diffuse Scattering from Molecular Crystals: Para-Terphenyl (C18H14). Metall Mater Trans A 41, 1119–1129 (2010). https://doi.org/10.1007/s11661-009-9897-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9897-y

Keywords

Navigation