Skip to main content
Log in

Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Polycrystalline γ-γ′ superalloys with varying grain sizes and unimodal, bimodal, or trimodal distributions of precipitates have been studied. To assess the contributions of specific features of the microstructure to the overall strength of the material, a model that considers solid-solution strengthening, Hall–Petch effects, precipitate shearing in the strong and weak pair-coupled modes, and dislocation bowing between precipitates has been developed and assessed. Cross-slip-induced hardening of the Ni3Al phase and precipitate size distributions in multimodal microstructures are also considered. New experimental observations on the contribution of precipitate shearing to the peak in flow stress at elevated temperatures are presented. Various alloys having comparable yield strengths were investigated and were found to derive their strength from different combinations of microconstituents (mechanisms). In all variants of the microstructure, there is a strong effect of antiphase boundary (APB) energy on strength. Materials subjected to heat treatments below the γ′ solvus temperature benefit from a strong Hall–Petch contribution, while supersolvus heat-treated materials gain the majority of their strength from their resistance to precipitate shearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. C. Ducrocq, A. Lasalmonie, and Y. Honnrat: in Superalloys, D.N Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman, eds., TMS, Warrendale, PA, 1988, pp. 63–72.

    Google Scholar 

  2. R.H. Caless and D.F. Paulonis: in Superalloys, D.N Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman, eds., TMS, Warrendale, PA, 1988, pp. 101–10.

    Google Scholar 

  3. H. Hattori, M. Takekawa, D. Furrer, and R.J. Noel: in Superalloys, R.D Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 705–12.

    Google Scholar 

  4. T.E. Howson, Jr. W.H. Couts, and J.E. Coyne: in Superalloys, M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, and J.F. Radavich, eds., TMS, Warrendale, PA, 1984, pp. 277–86.

    Google Scholar 

  5. F.R.N. Nabarro and H.L. deVilliers: The Physics of Creep: Creep and Creep-Resistant Alloys, Taylor & Francis, London, 1995.

    Google Scholar 

  6. J. Dennison, P.D. Holmes, and B. Wilshire: Mater. Sci. Eng., 1978, vol. 33, pp. 35–47.

    Article  CAS  Google Scholar 

  7. A. J. Foreman and M. J. Makin: Philos. Mag. A, 1966, vol. 14, pp. 911–24.

    Article  ADS  CAS  Google Scholar 

  8. H. Gleiter and E. Hornbogen: Mater. Sci. Eng., 1968, vol. 2, pp. 285–302.

    Article  CAS  Google Scholar 

  9. P. Feltham: J. Phys. D, 1968, vol. 1, pp. 303–08.

    Article  ADS  CAS  Google Scholar 

  10. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier Publishing Co., Ltd., Essex, England, 1971, pp. 9–135.

    Google Scholar 

  11. J.L. Castagne: J. Phys., 1966, vol. 27, pp. 233–39.

    Google Scholar 

  12. W. Huther and B. Reppich: Z. Metallkd., 1978, vol. 69, pp. 628–34.

    Google Scholar 

  13. E.J. Lee and A.J. Ardell: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Ltd., Oxford, England, 1979, pp. 633–38.

    Google Scholar 

  14. A.M. Wusatowska-Sarnek, G. Ghosh, G.B. Olson, M.J. Blackburn, and M. Aindow: J. Mater. Res., 2003, vol. 18, pp. 2653–63.

    Article  ADS  CAS  Google Scholar 

  15. S. Venkadesan, P. Rodriguez, K.A. Padmanabhan, P.V. Sivaprasad, and C. Phaniraj: Mater. Sci. Eng., 1992, vol. A154, pp. 69–74.

    CAS  Google Scholar 

  16. M. Meyers and K. Chawla: Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, NJ, 1999.

    MATH  Google Scholar 

  17. A.W. Thompson: Acta Metall., 1977, vol. 25, pp. 63–66.

    Google Scholar 

  18. S. Schilnzer and E. Nembach: Acta Metall., 1992, vol. 40, pp. 803–13.

    Article  Google Scholar 

  19. F. Wallow and E. Nembach: Scripta Metall., 1996, vol. 34, pp. 499–505.

    Article  CAS  Google Scholar 

  20. L.A. Gypen and A. Deruyttere: J. Mater. Sci., 1977, vol. 12, pp. 1028–33.

    Article  ADS  CAS  Google Scholar 

  21. R.L. Fleischer: Acta Metall., 1963, vol. 11, pp. 203–09.

    Article  CAS  Google Scholar 

  22. N.F. Mott and F.R.N. Nabarro: in 1947 Bristol Conference on Strength of Solids, Physical Society of London, 1948, p. 1.

  23. J. Friedel: Dislocations, Pergamon Press, Oxford, England, 1964.

    MATH  Google Scholar 

  24. U.F. Kocks: Metall. Trans. A, 1985, vol. 16A, pp. 2109–30.

    ADS  CAS  Google Scholar 

  25. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1329–35.

    Article  CAS  Google Scholar 

  26. J.H. Westbrook: Trans. AIME, 1957, vol. 209, pp. 898–904.

    Google Scholar 

  27. P.A. Flinn: Trans. AIME, 1960, vol. 218, pp. 145–54.

    CAS  Google Scholar 

  28. B.H. Kear and H.G.F Wilsdorf: Trans. TMS-AIME, 1962, vol. 224, pp. 362–64.

    Google Scholar 

  29. O. Veyssiere and G. Saada: in Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., North Holland, Amsterdam, 1996, pp. 253–441.

    Google Scholar 

  30. D. Caillard and J.L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, Pergamon, London, 2003.

    Google Scholar 

  31. K.J. Hemker, M.J. Mills, and W.D. Nix: J. Mater. Res., 1992, vol. 7, pp. 2059–69.

    Article  ADS  CAS  Google Scholar 

  32. B. Viguier, J.L. Martin, and J. Bonneville, in Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., North Holland, Amsterdam, 2002, p. 459.

  33. S.S. Ezz and P.B. Hirsch: Philos. Mag. A, 1994, vol. 69, pp. 105–27.

    Article  ADS  CAS  Google Scholar 

  34. B. Devincre, P. Veyssiere, and G. Saada: Philos. Mag. A, 1999, vol. 79, pp. 1609–28.

    Article  ADS  CAS  Google Scholar 

  35. V. Paidar, D.P. Pope, and V. Vitek: Acta. Metall., 1984, vol. 32, pp. 435–48.

    Article  CAS  Google Scholar 

  36. A.J. Ardell: Metall. Trans. A, 1985, vol. 16A, pp. 2131–66.

    ADS  CAS  Google Scholar 

  37. P.H. Thornton, R.G. Davies, and T.L. Johnston: Metall. Trans., 1970, vol. 1, pp. 207–18.

    CAS  Google Scholar 

  38. B.H. Kear and B.J. Piearcey: Trans. TMS-AIME, 1967, vol. 239, pp. 1209–15.

    CAS  Google Scholar 

  39. V.K. Sikka and E.A. Loria: in Superalloys, D.N Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman, eds., TMS, Warrendale, PA, 1988, pp. 203–12.

    Google Scholar 

  40. C. Monier, C. Bertrand, J.-P. Dallas, M.-F. Trichet, and M. Cornet: Mater. Sci. Eng., 1994, vol. A188, pp. 133–39.

    CAS  Google Scholar 

  41. A. Nitz and E. Nembach: Metall. Mater. Trans. A, 1997, vol. 29A, pp. 799–807.

    Google Scholar 

  42. A. Banik and K.A. Green: in Superalloys, T.M. Pollock, R.D. Kissinger, and R.R. Bowman, eds., 2000, pp. 69–74.

  43. M. Dollar and I.M. Bernstein: in Superalloys, D.N Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman, eds., TMS, Warrendale, PA, 1988, pp. 275–84.

    Google Scholar 

  44. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 648–55.

    CAS  Google Scholar 

  45. P.A. Flinn: Strengthening Mechanisms in Solids, ASM, Metals Park, OH, 1962, p. 17.

    Google Scholar 

  46. R.G. Davies and N.S. Stoloff: Trans. TMS-AIME, 1965, vol. 233, pp. 714–19.

    CAS  Google Scholar 

  47. S. Miura, Y. Mishima, and T. Suzuki: J. Jpn. Inst. Met., 1992, vol. 56, pp. 1214–20.

    CAS  Google Scholar 

  48. F.E. Haredia and D.P. Pope: High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987, pp. 213–20.

    Google Scholar 

  49. J. Lopez and G.F. Hancock: Phys. Status Solidi A, 1970, vol. 2, pp. 469–74.

    Article  CAS  Google Scholar 

  50. K. Aoki and O. Izumi: Phys. Status Solidi A, 1976, vol. 38, pp. 587–94.

    Article  CAS  Google Scholar 

  51. C.T. Liu and D.P. Pope: in Intermetallic Compounds, J.H. Westbrook and R.L Fleischer, eds., John Wiley & Sons, New York, NY, 1995.

    Google Scholar 

  52. R.J. Taunt and B. Ralph: Philos. Mag., 1974, vol. 30, pp. 1379–94.

    Article  ADS  CAS  Google Scholar 

  53. M. Vittori and A. Mignone: Mater. Sci. Eng., 1985, vol. 71, pp. 29 –37.

    Google Scholar 

  54. D. M. Dimiduk, A.W. Thompson, and J.C. Williams: Philos. Mag. A, 1993, vol. 67 (3), pp. 675–98.

    Article  ADS  CAS  Google Scholar 

  55. T. Kruml, B. Viguier, J. Bonneville, P. Spatig, and J.L. Martin: MRS Symp. Proc., 1997, vol. 460, pp, 529–34.

    CAS  Google Scholar 

  56. D. McLean: Met. Sci., 1984, vol. 18, pp. 249–56.

    Article  CAS  Google Scholar 

  57. P.W. Voorhees: J. Stat. Phys., 1985, vol. 38, pp. 231–53.

    Article  ADS  Google Scholar 

  58. S.C. Hardy and P.W. Voorhees: Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    ADS  CAS  Google Scholar 

  59. T. Eguchi, Y. Tomokiyo, and S. Matsumura: Phase Transitions, 1987, vol. 8, pp. 213–26.

    Article  CAS  Google Scholar 

  60. I.M. Lifshitz and V.V Slyozov: J. Phys. Chem. Solids., 1961, vol. 19, pp. 35–50.

    Article  ADS  Google Scholar 

  61. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and Kinetics of Slip, Pergamon Press, New York, NY, 1975.

    Google Scholar 

  62. U. Lagerpusch, V. Mohles, and E. Nembach: Mater. Sci. Eng., 2001, vols. A319–A321, pp. 176–78.

    Google Scholar 

  63. T.A. Parthasarathy, S.I. Rao, and D.M. Dimiduk: Superalloys, TMS, Warrendale, PA, 2004, pp. 887–96.

    Google Scholar 

  64. S.I. Rao, T.A. Parthasarathy, D.M. Dimiduk, and P.M. Hazzledine: Philos. Mag. A, 2006, vol. 86 (4), pp. 215–25.

    Article  ADS  CAS  Google Scholar 

  65. P. Sarosi, G. Viswanathan, D. Whitis, and M. Mills: Superalloys, TMS, Warrendale, PA, 2004, pp. 989–96.

    Google Scholar 

  66. R. Ebeling and M.F. Ashby: Philos. Mag., 1966, vol. 13, pp. 805–34.

    Article  ADS  CAS  Google Scholar 

  67. P.B. Hirsch and F.J. Humphreys: Proc. R. Soc., 1970, vol. A318, pp. 45–72.

    ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Mike Long, Engineous Software (SIMULIA, Province, RI), for his assistance with iSight software, and to Dennis Dimiduk and Triplicane Parthasarathy for their valuable discussions. The financial support of the DARPA/AIM project under Grant No. F005484, sponsored by Pratt & Whitney, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.W. Kozar.

Additional information

Manuscript submitted September 17, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozar, R., Suzuki, A., Milligan, W. et al. Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys. Metall Mater Trans A 40, 1588–1603 (2009). https://doi.org/10.1007/s11661-009-9858-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9858-5

Keywords

Navigation