Advertisement

Metallurgical and Materials Transactions A

, Volume 40, Issue 7, pp 1693–1700 | Cite as

Evaluation of Texture and Grain Size of Nanograined Copper Produced by the Accumulative Roll Bonding Process

Article

Abstract

Pure copper was intensely deformed by accumulative roll bonding (ARB) for up to eight cycles at ambient temperature. X-ray diffraction (XRD) was used to evaluate the grain size and texture during the ARB process. The Williamson–Hall method was used to calculate the grain size from the XRD patterns, which was about 30 nm after eight cycles of the ARB process. Texture analysis revealed cube texture in the initial copper. The intensity of cube texture decreased after one cycle of the ARB process. The texture of two-cycle ARB-processed sample was a transition texture, from cube to shear texture (rotated cube) that appeared after two cycles of ARB process in the subsurface regions. This shear texture developed due to shear deformation induced by the high level of friction between the rolls and the sheet. Moreover, shear texture was replaced by recrystallization texture (cube component) by annealing the ARB-processed samples. This result was caused by preferential growth of cube grains.

Keywords

Pole Figure Textural Evolution Accumulative Roll Bonding Recrystallization Texture Subgrain Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.CrossRefGoogle Scholar
  2. 2.
    B. Cherukuri, T.S. Nedkova, and R. Srinivasan: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 394–97.Google Scholar
  3. 3.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.CrossRefGoogle Scholar
  4. 4.
    X. Huang, N. Tsuji, N. Hansen, and Y. Minamino: Mater. Sci. Eng. A, 2003, vol. 340, pp. 265–71.CrossRefGoogle Scholar
  5. 5.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scripta Mater., 1998, vol. 39, pp. 1221–27.CrossRefGoogle Scholar
  6. 6.
    N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–800.CrossRefGoogle Scholar
  7. 7.
    J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A.K. Basu: Mater. Res. Bull., 2008, vol. 43, pp. 1023–31.CrossRefGoogle Scholar
  8. 8.
    S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, and S. Soren: Scripta Mater., 2006, vol. 54, pp. 1691–96.CrossRefGoogle Scholar
  9. 9.
    C.P. Heason and P.B. Prangnell: Mater. Sci. Forum, 2002, vols. 408–412, pp. 733–38.CrossRefGoogle Scholar
  10. 10.
    S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar: Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57.CrossRefGoogle Scholar
  11. 11.
    M. Shaarbaf and M.R. Toroghinejad: Mater. Sci. Eng. A, 2008, vol. 473, pp. 28–33.CrossRefGoogle Scholar
  12. 12.
    G.K. Williamson and W.H. Hall: Acta Mater., 1953, vol. 1, pp. 22–40.CrossRefGoogle Scholar
  13. 13.
    P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, Pintu Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra: Acta Mater., 2004, vol. 52, pp. 5687–96.CrossRefGoogle Scholar
  14. 14.
    T. Ungar, G. Tichy, J. Gubicza, and R. Hellmig: Powder Diffr., 2005, vol. 20, pp. 366–75.CrossRefADSGoogle Scholar
  15. 15.
    T. Ungar, L. Balogh, Y.T. Zhu, Z. Horita, C. Xu, and T.G. Langdon: Mater. Sci. Eng. A, 2007, vol. 444, pp. 153–56.CrossRefGoogle Scholar
  16. 16.
    A.L.M. Costa, A.C.C. Reis, L. Kestens, and M.S. Andrade: Mater. Sci. Eng. A, 2005, vol. 406, pp. 279–85.CrossRefGoogle Scholar
  17. 17.
    N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44.CrossRefGoogle Scholar
  18. 18.
    H.W. Kim, S.B. Kang, M. Tsuji, and Y. Minamino: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3151–63.CrossRefGoogle Scholar
  19. 19.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, United Kingdom, 2004.Google Scholar
  20. 20.
    N. Takata, K. Yamada, K.I. Ikeda, F. Yoshida, H. Nakashima, and N. Tsuji: Mater. Sci. Forum, 2006, vols. 503–504, pp. 919–24.CrossRefGoogle Scholar
  21. 21.
    K. Ikeda, N. Takata, F. Yoshida, H. Nakashima, and H. Abe: Mater. Sci. Forum, 2002, vols. 396–402, pp. 569–74.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Mahnoosh Shaarbaf
    • 1
  • Mohammad Reza Toroghinejad
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations