Skip to main content
Log in

Combustion Synthesis Reactions in Cold-Rolled Ni/Al and Ti/Al Multilayers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, a cold rolling method was developed to fabricate Ni/Al and Ti/Al multilayer foils, and the combustion synthesis reactions in the cold-rolled foils were investigated. Combustion synthesis reactions were initiated by heating one end of the cold-rolled foil in a flame for several seconds. The Ni/Al foils went through three reaction stages. The first reaction stage was a displacement of reaction zone with Al3Ni as the reaction product. During the second stage, the part of the foil in the flame underwent thermal explosion. In the last stage, the heat released by thermal explosion triggered a self-propagating high-temperature synthesis (SHS) reaction across the foil that resulted in the formation of AlNi. In contrast, the Ti/Al foils experienced only two reaction stages. First, a displacement of the reaction zone propagated across the foil with formation of Al3Ti at the Ti/Al interface. Then a thermal explosion reaction occurred in the part of foil that was heated in the flame, resulting in many different phases in the reacted foil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.A. Munir and U. Anselmi-Tambutini: Mater. Sci. Rep., 1989, vol. 3, pp. 277–365.

    Article  CAS  Google Scholar 

  2. J.J. Moore and H.J. Feng: Prog. Mater. Sci., 1995, vol. 39, pp. 243–73.

    Article  CAS  Google Scholar 

  3. J.J. Moore and H.J. Feng: Prog. Mater. Sci., 1995, vol. 39, pp. 275–316.

    Article  CAS  Google Scholar 

  4. E. Ma, C.V. Thompson, L.A. Clevenger, and K.N. Tu: Appl. Phys. Lett., 1990, vol. 57, pp. 1262–64.

    Article  ADS  CAS  Google Scholar 

  5. D.P. Adams, M.A. Rodriguez, C.P. Tigges, and P.G. Kotula: J. Mater. Res., 2006, vol. 21, pp. 3168–79.

    Article  ADS  CAS  Google Scholar 

  6. R. Orru, G. Cao, and Z.A. Munir: Chem. Eng. Sci., 1999, vol. 54, pp. 3349–55.

    Article  CAS  Google Scholar 

  7. H.C. Yi and J.J. Moore: J. Mater. Sci., 1990, vol. 25, pp. 1159–68.

    CAS  Google Scholar 

  8. T.P. Weihs: Handbook of Thin Film Process Technology, Institute of Physics, Bristol, United Kingdom, 1998, pp. F7:1–13.

    Google Scholar 

  9. A.S. Rogachev: Russ. Chem. Rev., 2008, vol. 77, pp. 2137.

    Article  CAS  Google Scholar 

  10. H. Sieber, J.S. Park, J. Weissmüller, and H. Perepezko: Acta Mater., 2001, vol. 49, pp. 1139–51.

    Article  CAS  Google Scholar 

  11. X. Qiu and J. Wang: Scripta Mater., 2007, vol. 56, pp. 1055–58.

    Article  CAS  Google Scholar 

  12. L. Battezzati, P. Pappalepore, F. Purbiano, and I. Gallino: Acta Mater., 1999, vol. 47, pp. 1901–14.

    Article  CAS  Google Scholar 

  13. T.P. Weihs and M. Reiss: U.S. Patent 6,534,194, 2003.

  14. O.S. Rabinovich, P.S. Grinchuk, M.A. Andreev, and B.B. Khina: Physica B, 2007, vol. 392, pp. 272–80.

    Article  ADS  CAS  Google Scholar 

  15. U. Anselmi-Tamburini and Z.A. Munir: J. Appl. Phys., 1989, vol. 66, pp. 5039–45.

    Article  ADS  CAS  Google Scholar 

  16. P. Zhu, J.C. M. Li, and C.T. Liu: Mater. Sci. Eng. A, 2002, vols. 329-331, pp. 57–68.

    Article  Google Scholar 

  17. X. Qiu, J. Graeter, L. Kecskes, and J. Wang: J. Mater. Res., 2008, vol. 23, pp. 367–75.

    Article  ADS  CAS  Google Scholar 

  18. V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, and V.K. Mal’tsev: Tech. Phys., 1998, vol. 43, pp. 1189–92.

    Article  CAS  Google Scholar 

  19. A.B. Mann, A.J. Gavens, M.E. Reiss, D. Van Heerden, G. Bao, and T.P. Weihs: J. Appl. Phys., 1997, vol. 82, pp. 1178–88.

    Article  ADS  CAS  Google Scholar 

  20. A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihs: J. Appl. Phys., 2000, vol. 87, pp. 1255–63.

    Article  ADS  CAS  Google Scholar 

  21. X. Sauvage, G.P. Dinda, and G. Wilde: Scripta Mater., 2007, vol. 56, pp. 181–84.

    Article  CAS  Google Scholar 

  22. R. Pretorius, A.M. Vredenberg, F.W. Saris, and R. de Reus: J. Appl. Phys., 1991, vol. 70, pp. 3636–46.

    Article  ADS  CAS  Google Scholar 

  23. F.J.J. Van Loo and G.D. Rieck: Acta Mater., 1973, vol. 21, pp. 61–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaping Wang.

Additional information

Manuscript submitted October 22, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, X., Liu, R., Guo, S. et al. Combustion Synthesis Reactions in Cold-Rolled Ni/Al and Ti/Al Multilayers. Metall Mater Trans A 40, 1541–1546 (2009). https://doi.org/10.1007/s11661-009-9840-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9840-2

Keywords

Navigation