Skip to main content

Advertisement

Log in

Effect of Boron on the Elevated-Temperature Tensile and Creep Behavior of Cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Weight Percent)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μm. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Henceforth, all alloy compositions are given in weight percent.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. W.F. Smith: Structure and Properties of Engineering Alloys, McGraw-Hill, Inc., New York, NY, 1993.

    Google Scholar 

  2. R.W. Hayes, G.B. Viswanathan, and M.J. Mills: Acta Mater., 2002, vol. 50, pp. 4953–63.

    Article  CAS  Google Scholar 

  3. S.R. Seagle, G.S. Hall, and H.B. Bomberger: Met. Eng. Q., 1975, vol. 15, pp. 48–54.

    CAS  Google Scholar 

  4. S. Ankem and S.R. Seagle: Titanium Science Technology Oberursel, Duetsche Gesellschaft fur Metallkunde, Oberursel, Germany, 1985, pp. 2411–18.

    Google Scholar 

  5. C. Quesne, C. Duong, F. Charpentier, J. Fries, and P. Lacombe: J. Less Common Met., 1979, vol. 68, pp. 133–42.

    Article  CAS  Google Scholar 

  6. K.E. Thiehsen, M.E. Kassner, J. Pollard, D.R. Hiatt, and B.M. Bristow: Metall. Trans. A, 1993, vol. 24A, pp. 1819–26.

    ADS  CAS  Google Scholar 

  7. C.J. Boehlert, S. Tamirisakandala, and D.B. Miracle: Ti 2007 Sci. Technol., 2007, vol. 1, pp. 697–700.

    Google Scholar 

  8. C.J. Boehlert and W. Chen: Mater. Trans., 2009, in print.

  9. T. Saito: J. Met., 2004, vol. 56, pp. 33–36.

    CAS  Google Scholar 

  10. C.F. Yolton and J.H. Moll: in Titanium 1995, P.A. Blenkinsop, W.J. Evans, and H.M. Flowers, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 2755–62.

  11. S. Gorsse and D.B. Miracle: Acta Mater., 2003, vol. 51, pp. 2427–42.

    Article  CAS  Google Scholar 

  12. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle: Scripta Mater., 2005, vol. 53, pp. 1421–26.

    Article  CAS  Google Scholar 

  13. S. Tamirisakandala, R.B. Bhat, D.B. Miracle, S. Boddapati, R. Bordia, R. Vanover, and V.K. Vasudevan: Scripta Mater., 2005, vol. 53, pp. 217–22.

    Article  CAS  Google Scholar 

  14. W.O. Soboyejo, W. Shen, and T.S. Srivatsan: Mech. Mater., 2004, vol. 36, pp. 141–59.

    Article  Google Scholar 

  15. K.B. Panda and K.S. Ravi Chandran: Acta Mater., 2006, vol. 54, pp. 1641–57.

    Article  CAS  Google Scholar 

  16. C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, and D.B. Miracle: Scripta Mater., 2006, vol. 55, pp. 465–68.

    Article  CAS  Google Scholar 

  17. I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4983–93.

    Article  CAS  Google Scholar 

  18. C.J. Boehlert, S. Tamirisakandala, W.C. Curtin, and D.B. Miracle: Scripta Mater., 2009, in print.

  19. K.S.R Chandran, K.B. Panda, and S.S. Sahay: J. Met., 2004, vol. 56 (5), pp. 42–48.

    CAS  Google Scholar 

  20. D.X. Li, D.H. Ping, Y.X. Lu, and H.Q. Ye: Mater. Lett., 1993, vol. 16, pp. 322–26.

    Article  CAS  Google Scholar 

  21. C.J. Cowen and C.J. Boehlert: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 26–34.

    Article  ADS  CAS  Google Scholar 

  22. J.P. Quast and C.J. Boehlert: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 529–36.

    Article  CAS  Google Scholar 

  23. C.J. Boehlert, S.C. Longanbach, and T.R. Bieler: Phil. Mag., 2008, vol. 88, pp. 641–64.

    Article  ADS  CAS  Google Scholar 

  24. Y. Komizo, H. Terasaki, M. Ikeda, F. Nishino, and K. Toudai: Ti 2007 Sci. Technol., 2007, vol. 1, pp. 741–44.

    Google Scholar 

  25. R.W. Evans and B. Wilshire: Creep of Metals and Alloys, The Institute of Metals, New York, NY, 1985.

    Google Scholar 

  26. W. Chen and C.J. Boehlert: Mater. Sci. Eng. A, 2008, vol. 494, pp. 132–38.

    Article  Google Scholar 

  27. J.R. Porter, J.A. Hall, J.C. Chesnutt, and C.G. Rhodes: “Advanced Ti-Based MMC Development,” Interim Report WL-TR-95-4034, Wright Patterson Air Force Base, Dayton, OH, 1995.

  28. P.R. Smith, A. Rosenberger, and M.J. Shepard: Scripta Metall., 1999, vol. 41 (2), pp. 221–28.

    Article  CAS  Google Scholar 

  29. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994, p. 337.

    Google Scholar 

  30. J.A. Vreeling, V. Ocelik, and J.T.M. De Hosson: Acta Mater., 2002, vol. 50, pp. 4913–24.

    Article  CAS  Google Scholar 

  31. A.B. Kloosterman, B.J. Kooi, and J.T.M. De Hosson: Acta Mater., 1998, vol. 46, pp. 6205–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. S. Tamirisakandala (FMW Composites, Inc.) and D.B. Miracle (Air Force Research Laboratory) for donating the material used in this study as well as their helpful technical support and guidance. In addition, the authors are grateful to Mr. Larry Walker (Oak Ridge National Lab (ORNL)) for performing the microprobe work. The microprobe analysis and in-situ tensile creep experiments were performed at ORNL and were sponsored, in part, by the SHaRE User Facility, Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy. The authors are grateful to Thomas Garcia (formerly of Michigan State University and now at Lockheed Martin) for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Chen.

Additional information

Manuscript submitted August 27, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Boehlert, C. Effect of Boron on the Elevated-Temperature Tensile and Creep Behavior of Cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Weight Percent). Metall Mater Trans A 40, 1568–1578 (2009). https://doi.org/10.1007/s11661-009-9838-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9838-9

Keywords

Navigation