Skip to main content
Log in

Probing Phase Evolution Behavior during Nanocrystallization of Metallic Glass Using Positron Annihilation Spectroscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) techniques have been used to study the nanocrystallization behavior of soft magnetic materials, using Metglas 2826MB as an example. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterization techniques revealed the presence of two phases, γ-(Fe,Ni) and (Fe,Ni,Mo)23B6, as well as the size and volume fraction of the phases following predetermined thermal annealing. Two distinct positron lifetime components have been observed in both amorphous and nanocrystallized samples. In the nanocrystallized samples, it has been demonstrated unambiguously that small and large lifetime components were due to positron annihilation with crystalline nanophases and with amorphous-crystalline or intercrystalline interfaces, respectively. First-principle calculation of the positron lifetime and electron momentum distribution in crystalline phases, supplemented by TEM and XRD studies, helped in the unambiguous interpretation of the experimental observation. This study throws new insights into positron behavior in metallic glasses, especially in the presence of single or multiple nanophases embedded in the amorphous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. FINEMET is a registered trademark of Hitachi Metals, Ltd., Arlington Heights, IL.

  2. NANOPERM is a registered trademark of MAGNETEC GmbH, Langenselbold, Germany.

  3. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  4. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R.N. West: Adv. Phys., 1974, vol. 22, p. 263.

    Article  ADS  Google Scholar 

  2. W. Brandt and A. Dupasquier: Positron Solid State Physics, North-Holland, Amsterdam, 1984, pp. 1–228.

  3. K.P. Gopinathan and C.S. Sundar: in Metallic Glasses: Production, Properties and Applications, T.R. Anantharaman, ed., Trans Tech Publications, Stafa-Zurich, Switzerland, 1984, pp. 115–46.

    Google Scholar 

  4. H.S. Chen and S.Y. Chuang: Appl. Phys. Lett., 1975, vol. 27, pp. 316–17.

    Article  ADS  CAS  Google Scholar 

  5. Z. Michno and T. Gorecki: Proc. Int. Positron Workshop, Peter Sperr and Gotteried Kogel, eds., Universitat der bundeswehr, Munchen, 1988, p. 61.

  6. A. Dupasquir, G. Kogel, and A. Somaza: Acta Mater., 2004, vol. 52, pp. 4707–26.

    Article  Google Scholar 

  7. M. Puska, and R. Nieminen: Rev. Mod. Phys., 1994, vol. 66, pp. 841–97.

    Article  ADS  CAS  Google Scholar 

  8. C. Nagel, K. Rätzke, E. Schmidtke, and J. Wolff: Phys. Rev. B, 1998, vol. 57, pp. 10224–27.

    Article  ADS  CAS  Google Scholar 

  9. P. Asoka Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, and K.G. Lynn: Phys. Rev. Lett., 1996, vol. 77, pp. 2097–2100.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, and M. Hasegawa: Phys. Rev. B, 2003, vol. 67, pp. 224202:1–224202:6.

    Article  ADS  Google Scholar 

  11. P.P. Chattopadhyay, P.M.G. Nambissan, K. Pabi, and I. Manna: Phys. Rev. B, 2001, vol. 63, pp. 054107:1–054107:7.

    ADS  Google Scholar 

  12. R. Würschum, E. Shapiro, R. Dittmar, and H.-E. Schaefer: Phys. Rev. B, 2000, vol. 62, pp. 12021–27.

    Article  ADS  Google Scholar 

  13. H.-E. Schaefer and R. Würschum: Phys. Rev. B, 1988, vol. 38, pp. 9545–54.

    Article  ADS  CAS  Google Scholar 

  14. X.Y. Zhang, Y. Guan, J.W. Zhang, W. Sprengel, K.J. Reichle, K. Blaurock, K. Reimann, and H.-E. Schaefer: Phys. Rev. B, 2002, vol. 66, pp. 212103:1–212103:4.

    ADS  Google Scholar 

  15. A. Dupasquier: Phys. Rev. B, 1993, vol. 48, pp. 9235–45.

    Article  ADS  CAS  Google Scholar 

  16. W. Lu, L. Yang, B. Yan, and W.-H. Huang: Mater. Sci. Eng., B, 2006, vol. 128, pp. 179–83.

    Article  CAS  Google Scholar 

  17. T. Liu, Z.X. Xu, and R.Z. Ma: J. Magn. Magn. Mater. 1996, vol. 152, pp. 365–69.

    Article  ADS  CAS  Google Scholar 

  18. M. Miglierini, T. Kanuch, M. Pavuk, and V. Slugen: J. Magn. Magn. Mater., 2006, vol. 304, pp. e666–e668.

    Article  ADS  CAS  Google Scholar 

  19. F.M. McHenry, M.A. Willard, and D.E. Laughlin: Prog. Mater. Sci., 1999, vol. 44, pp. 291–433.

    Article  CAS  Google Scholar 

  20. Y. Yoshijawa, S. Oguma, and K. Yamauchi: J. Appl. Phys., 1988, vol. 64, pp. 6044–46.

    Article  ADS  Google Scholar 

  21. G. Herzer: IEEE Trans. Magn., 1990, vol. 26, pp. 1397–1402.

    Article  ADS  CAS  Google Scholar 

  22. G. Herzer: Handbook of Magnetic Materials, Elsevier Science, Amsterdam, 1997, vol. 10, p. 415.

  23. G. Herzer: J. Magn. Magn. Mater., 1992, vol. 112, pp. 258–62.

    Article  ADS  CAS  Google Scholar 

  24. J.S. Blázquez, S. Roth, C. Mickel, and A. Conde: Acta Mater., 2005, vol. 53, pp. 1241–51.

    Article  Google Scholar 

  25. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publication Company, Inc., Menlo Park, CA, p. 284.

  26. K.P. Mizgalski, O.T. Inal, F.G. Yost, and M.M. Karnowasky: J. Mater. Sci., 1981, vol. 16, pp. 3357–64.

    Article  ADS  CAS  Google Scholar 

  27. M. Alatalo, H. Kauppinen, K. Saarinen, M.J. Puska, J. Makinen, P. Hautojarvi, and R.M. Nieminen: Phys. Rev. B, 1995, vol. 51, pp. 4176–85.

    Article  ADS  CAS  Google Scholar 

  28. E. Boronski and R.M. Nieminen: Phys. Rev. B, 1986, vol. 34, pp. 3820–31.

    Article  ADS  CAS  Google Scholar 

  29. M. Heiskanen, T. Torsti, M.J. Puska, and R.M. Nieminen: Phys. Rev. B, 2001, vol. 63, pp. 245106:1–245106:8.

    Article  ADS  Google Scholar 

  30. A.P. Srivastava, D. Srivastava, and G.K. Dey: J. Magn. Magn. Mater., 2006, vol. 306, pp. 147–55.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Srivastava.

Additional information

Manuscript submitted February 21, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A.P., Srivastava, D., Dey, G.K. et al. Probing Phase Evolution Behavior during Nanocrystallization of Metallic Glass Using Positron Annihilation Spectroscopy. Metall Mater Trans A 40, 1757–1766 (2009). https://doi.org/10.1007/s11661-009-9832-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9832-2

Keywords

Navigation