Skip to main content
Log in

Microstructure and Microtexture Formation of AZ91D Magnesium Alloys Solidified in a Static Magnetic Field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, we solidified AZ91D magnesium alloys in a static magnetic field with a magnetic flux density up to 10 Tesla (T). Three different regions can be identified in a solidified alloy, according to their microtexture and microstructure; these regions are: (a) region (A), the central region with equiaxed dendrites, (b) region (B), the transitional region with directional dendrites grown from an unmelted region, and (c) region (C), the edge region with cellular dendrites grown from the substrate of the container. No detectable difference can be discerned with regard to the influence of the magnetic field on the microstructure in region (A). However, the microtexture evolution in the region shows a strong dependence on the magnetic field and the preferential orientation formation is briefly elucidated. Special attention is focused on the orientation development of the directional dendrites in region (B) as a function of the magnetic flux density B 0, when the electron backscatter diffraction (EBSD) technique is employed. It is shown that the directional dendrites exhibit a random orientation distribution at B 0 < 5 T, while they have a unique orientation at B 0 ≥ 5 T. Microstructure observation indicates that the crystallographic orientation selection completes at the interface of the melt/unmelted regions. A theoretical analysis reveals that the competition between the magnetization energy and the anisotropic interfacial energy difference of the crystals controls the crystallographic orientation selection. For the microstructure and microtexture in region (C), heterogeneous nucleation takes place from the polycrystalline Al2O3 substrate and thus enables a random crystallographic orientation distribution. The short growth interval may not be sufficient for the preferred growth direction to be selected near the chilling area; this applies to the cellular dendrites grown from the substrate at all levels of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. T.T. Natarajan and N. El-Kaddah: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 775–85.

    Article  CAS  Google Scholar 

  2. W. Chen, Y. Kinemuchi, K. Watari, T. Tamura, and K. Miwa: J. Am. Ceram. Soc., 2006, vol. 89, pp. 490–93.

    Article  CAS  Google Scholar 

  3. X.Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, and S. Kamada: Physica C, 2003, vols. 392–396, pp. 453–57.

    Article  Google Scholar 

  4. T. Minami, H. Nanto, and S. Takata: Appl. Phys. Lett., 1982, vol. 41, pp. 958–60.

    Article  ADS  CAS  Google Scholar 

  5. H. Fujii, S. Tsurekawa, T. Matsuzaki, and T. Watanabe: Philos. Mag. Lett., 2006, vol. 86, pp. 113–22.

    Article  ADS  CAS  Google Scholar 

  6. P. De Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, and M. Pernet: Nature, 1991, vol. 349, pp. 770–72.

    Article  ADS  Google Scholar 

  7. B.A. Legrand, D. Chateigner, R. Perrier de la Bathie, and R. Tournier: J. Magn. Magn. Mater., 1997, vol. 173, pp. 20–28.

    Article  ADS  CAS  Google Scholar 

  8. H. Yasuda, I. Ohnaka, Y. Yamamoto, A.S. Wismogroho, N. Takezawa, and K. Kishio: Mater. Trans., 2003, vol. 44, pp. 2550–54.

    Article  CAS  Google Scholar 

  9. H. Yasuda, I. Ohnaka, S. Fujimoto, N. Takezawa, A. Tsuchiyama, T. Nakano, and K. Uesugi: Scripta Mater., 2006, vol. 54, pp. 527–32.

    Article  CAS  Google Scholar 

  10. M. Usui, K. Iwai, and S. Asai: ISIJ Int., 2006, vol. 46, pp. 859–63.

    Article  CAS  Google Scholar 

  11. H. Minagawa, K. Kamada, H. Nagai, Y. Nakata, and T. Okutani: J. Magn. Magn. Mater., 2002, vol. 248, pp. 230–35.

    Article  ADS  CAS  Google Scholar 

  12. P. Deng, J. Li, and Z. Xu: J. Appl. Phys., 2006, vol. 100, pp. 053905-1–053905-5.

    ADS  Google Scholar 

  13. S. Asai: ISIJ Int., 2007, vol. 47, pp. 519–22.

    Article  CAS  Google Scholar 

  14. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Ltd., Aedermannsdorf, Switzerland, 1992, pp. 1–44.

    Google Scholar 

  15. H. Yasuda, T. Yoshimota, T. Mizuguchi, Y. Tamura, T. Nagira, and M. Yoshiya: ISIJ Int., 2007, vol. 47, pp. 612–18.

    Article  CAS  Google Scholar 

  16. B.H. Dennis and G.S. Dulikravich: Int. J. Heat Fluid Flow, 2002, vol. 23, pp. 269–77.

    Article  Google Scholar 

  17. C.D. Seybert, J.W. Evans, F. Leslie, and W.K. Jones, Jr.: J. Appl. Phys., 2000, vol. 88, pp. 4347–51.

    Article  ADS  CAS  Google Scholar 

  18. H.P. Utech and M.C. Flemings: J. Appl. Phys., 1966, vol. 37, pp. 2021–24.

    Article  ADS  CAS  Google Scholar 

  19. G. Mathiak and G. Frohberg: Cryst. Res. Technol., 1999, vol. 34, pp. 181–88.

    Article  CAS  Google Scholar 

  20. M.M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium Alloys, The Materials International Society, Materials Park, OH, 1999, p.15.

    Google Scholar 

  21. For physical properties of Mg alloys, see http://www.intlmag.org/physical.aspx.

  22. S. Asai: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. R1–R12.

    Article  ADS  CAS  Google Scholar 

  23. W.R. Angus, J. Favede, J. Hoarau, and A. Pacault: Landolt-Bornstein: Eigenschaften der Materie in Ihren Aggregatzustanden, 10 Teil, Magnetic Properties II, Springer-Verlag, Berlin, 1967, pp. 140–47.

  24. D.R. Lide: CRC Handbook of Chemistry and Physics, 82nd ed., RC Press, Taylor and Francis, Boca Raton, FL, 2001, pp. 4-141–4-143.

    Google Scholar 

  25. D.M. Herlach: Mater. Sci. Eng., R, 1994, vol. 12, pp. 177–272.

    Article  Google Scholar 

  26. C. Wu, S. Li, K. Sassa, Y. Chino, K. Hattori, and S. Asai: Mater. Trans., 2005, vol. 46, pp. 1311–17.

    Article  CAS  Google Scholar 

  27. T. Sugiyama, M. Tahashi, K. Sassa, and S. Asai: ISIJ Int., 2003, vol. 43, pp. 855–61.

    Article  CAS  Google Scholar 

  28. K. Pettersen and N. Ryum: Metall. Trans. A, 1989, vol. 20A, pp. 847–52.

    ADS  CAS  Google Scholar 

  29. K. Pettersen, O. Lohne, and N. Ryum: Metall. Trans. A, 1990, vol. 21A, pp. 221–30.

    ADS  CAS  Google Scholar 

  30. Z.G. Xia, D.Y. Sun, M. Asta, and J.J. Hoyt: Phys. Rev. B, 2007, vol. 75, pp. 012103-1–012103-4.

    Article  ADS  Google Scholar 

  31. D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Scolovitz: Phys. Rev. B, 2006, vol. 73, pp. 024116-1–024116-12.

    ADS  Google Scholar 

  32. K. Nagashio and K. Kuribayashi: Acta Mater., 2005, vol. 53, pp. 3021–29.

    Article  CAS  Google Scholar 

  33. T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Nature Mater., 2006, vol. 5, pp. 660–64.

    Article  ADS  CAS  Google Scholar 

  34. C.A. Becker, D. Olmsted, M. Asta, J.J. Hoyt, and S.M. Foiles: Phys. Rev. Lett., 2007, vol. 98, pp. 125701-1–125701-4.

    Article  ADS  Google Scholar 

  35. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, and M. Ruhle: Science, 2005, vol. 310, pp. 661–63.

    Article  PubMed  ADS  CAS  Google Scholar 

  36. R. Tonhardt and G. Amberg: J. Cryst. Growth, 2000, vol. 213, pp. 161–87.

    Article  ADS  CAS  Google Scholar 

  37. J. Li, J. Wang, and G. Yang: J. Cryst. Growth, 2007, vol. 309, pp. 65–69.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. N. Saito for his technical assistance in the EBSD analysis. The authors also thank Dr. Y. Mizutani for his contribution in temperature profile measurement, Dr. N. Omura for valuable discussions, and Dr. Y. Zou for his help in the XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Li.

Additional information

Manuscript submitted July 31, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Tamura, T. & Miwa, K. Microstructure and Microtexture Formation of AZ91D Magnesium Alloys Solidified in a Static Magnetic Field. Metall Mater Trans A 40, 1422–1435 (2009). https://doi.org/10.1007/s11661-009-9831-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9831-3

Keywords

Navigation