Skip to main content
Log in

Deformation and Microstructure Evolution in Co-Ni-Cr-Mo Superalloy during Hot Working

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation and microstructure evolution in Co-33Ni-20Cr-10Mo superalloy during hot deformation are studied by carrying out compression tests between 950 °C and 1200 °C with an increment of 50 °C at strain rates of 0.1, 1, 10, and 30 s−1. The flow curves obtained for the aforementioned strain rates in this temperature range show that this alloy has high work-hardening characteristics; this is due to the strong dislocation-solute interactions associated with dynamic strain aging (DSA). Microstructures deformed at temperatures up to 1050 °C consist of numerous deformation twins and highly dense dislocations, which are attributed to the high activation energy for deformation and the relatively low strain-rate sensitivity m in the temperature range of 950 °C to 1200 °C. Dynamic recrystallization (DRX), which is dependent on the strain rate, occurs at T = 1000 °C, 1050 °C, 1100 °C, 1150 °C, and 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J.P. Immarigeon, K. Rajan, and W. Wallace: Metall. Trans. A, 1984, vol. 15A, pp. 339–45.

    ADS  CAS  Google Scholar 

  2. A. Chiba, X.G. Li, and M.S. Kim: Philos. Mag., 1999, vol. 79, pp. 1533–54.

    ADS  CAS  Google Scholar 

  3. M.A. Meyers, O. Vohringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  CAS  Google Scholar 

  4. R.E. Reed Hill, J.P. Hirth, and H.C. Rogers: Deformation Twinning, Gordon and Breach, New York, 1964, p. 7.

    Google Scholar 

  5. P. Mullner, C. Solenthaler, and M.O. Speidel: Acta Mater., 1994, vol. 42, pp. 1727–32.

    Article  Google Scholar 

  6. G. Gottstein, H. Mecking, and D. Zabardjadi: Proc. 4th Int. Conf. Strength of Metals and Alloys, Nancy, France, 1976, pp. 1126–34.

  7. R. Raj: Trans. AIME, 1981, vol. 12, pp. 1089–97.

    CAS  Google Scholar 

  8. C.E. Campbell, W.J. Boettinger, and U.R. Kattner: Acta Mater., 2002, vol. 50, pp. 775–92.

    Article  CAS  Google Scholar 

  9. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng., 2002, vol. 322, pp. 43–63.

    Article  Google Scholar 

  10. M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, and V. Singh: Mater. Sci. Eng., 1998, vol. 245, pp. 88–99.

    Article  Google Scholar 

  11. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Mater. Sci. Eng., 2000, vol. 293, pp. 198–207.

    Article  Google Scholar 

  12. A.A. Guimares and J.J. Jonas: Metall. Trans. A, 1981, vol. 12A, pp. 1655–66.

    ADS  Google Scholar 

  13. A. Kelly and R.B. Nicholson: Progr. Mater. Sci., 1967, vol. 10, p. 984.

    Google Scholar 

  14. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw Hill Book Co., New York, NY, 1976, pp. 138.

    Google Scholar 

  15. H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 895–905.

    Article  CAS  Google Scholar 

  16. R. Ebrahimi, A. Najafizadeh, and R. Shateri: Proc. 81st Steel Symp., Iranian Institute for Iron and Steel, Isphahan, Iran, 2003, pp. 230–37.

  17. A. Van Den Beukel and U.F. Kocks: Acta Mater., 1982, vol. 30, pp. 1027–34.

    Article  Google Scholar 

  18. F. Montheillet and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3346–48.

    Article  ADS  CAS  Google Scholar 

  19. T. Chunfeng, P. Feng, Q. Xuanhui, D. Baihua, W. Tianjian, and H. Xinbo: Rare Met., 2008, vol. 27, pp. 292–98.

    Article  Google Scholar 

  20. X. Yourong, C. Liangshen, J. Lei, and W. Deying: Proc. 2nd Int. Conf., Intelligent Processing and Manufacturing of Materials, IPMM, Honolulu, 1999, vol. 2, pp. 805–10.

  21. M.J. Weis, M.C. Mataya, S.W. Thompson, and D.K. Matlock: in Superalloy 71- Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, p. 135.

    Google Scholar 

  22. C.I. Garcia, G.D. Wang, D.E. Camus, E.A. Loria, and A.J. DeArdo: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, eds., TMS, Warrendale, PA, 1994, p. 293.

    Google Scholar 

  23. L.X. Zhou and T.N. Baker: Mater. Sci. Eng., 1994, vol. A177, pp. 1–9.

    Google Scholar 

  24. W. Chen and M.C. Chaturvedi: Mater. Sci. Eng., 1994, vol. A183, pp. 81–89.

    Google Scholar 

  25. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Scripta Mater., 2000, vol. 42, pp. 17–23.

    CAS  Google Scholar 

  26. D.W. Livesey and C.M. Sellars: Mater. Sci. Technol., 1985, vol. 1, pp. 136–44.

    CAS  Google Scholar 

  27. G. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1795–1803.

    Article  ADS  CAS  Google Scholar 

  28. T. Sakai and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251–57.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Cooperation of Innovative Technology and Advanced Research in Evolutional Area, the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chiba.

Additional information

Manuscript submitted August 29, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartika, I., Matsumoto, H. & Chiba, A. Deformation and Microstructure Evolution in Co-Ni-Cr-Mo Superalloy during Hot Working. Metall Mater Trans A 40, 1457–1468 (2009). https://doi.org/10.1007/s11661-009-9829-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9829-x

Keywords

Navigation