Skip to main content
Log in

Dynamic Fracture Initiation Toughness of a Gamma (Met-PX) Titanium Aluminide at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently, a new generation of titanium aluminide alloy named Gamma-Met PX (GKSS, Geesthacht, Germany) has been developed with better rolling and postrolling characteristics. Previous work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasistatic and high-strain-rate uniaxial compressive loading. However, its high-strain-rate tensile ductility at room and elevated temperatures is limited to ~1 pct. In the present article, the results of a study investigating the effects of the loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. A modified split Hopkinson pressure bar (MSHPB) was used along with high-speed photography, to determine the dynamic fracture initiation toughness. Three-point-bend fracture tests were conducted at impact speeds in the range 1 to 3.6 m/s and at test temperatures up to 1200 °C. Furthermore, the effect of long-time high-temperature air exposure on the fracture toughness was investigated. The results show that the dynamic fracture initiation toughness decreases at test temperatures beyond 600 °C. Moreover, the dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, pp. 427–39.

    ADS  CAS  Google Scholar 

  2. B. Dogan, D. Schoneich, K.H. Schwalbe, and R. Wagner: Intermetallics, 1996, vol. 4, pp. 61–69.

    Article  CAS  Google Scholar 

  3. C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton: Intermetallics, 1996, vol. 4, pp. 429–40.

    Article  CAS  Google Scholar 

  4. Y.W. Kim: Mater. Sci. Eng., A, 1995, vols. A192–A193, pp. 519–33.

    Google Scholar 

  5. Z.J. Pu, K.H. Wu, J. Shi, and D. Zou: Mater. Sci. Eng., A, 1995, vols. A192–A193, pp. 347–55.

    Google Scholar 

  6. M.A. Morris and M. Leboeuf: Mater. Sci. Eng., A, 1997, vol. 224, pp. 1–11.

    Article  Google Scholar 

  7. N.J. Rogers, P.D. Crofts, I.P. Jones, and P. Bowen: Mater. Sci. Eng., A, 1995, vols. A192–A193, pp. 379–86.

    Google Scholar 

  8. M. Enoki and T. Kishi: Mater. Sci. Eng., A, 1995, vols. A192–A193, pp. 420–26.

    Google Scholar 

  9. Z.M. Sun, T. Kobayashi, H. Fukumasu, I. Yamamoto, and K. Shibue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 263–77.

    Article  CAS  Google Scholar 

  10. K. Matsugi, T. Hatayama, and O. Yanagisawa: Intermetallics, 1999, vol. 7, pp. 1049–57.

    Article  CAS  Google Scholar 

  11. H. Fukumasu, T. Kobayashi, H. Toda, and K. Shibue: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3053–61.

    Article  CAS  Google Scholar 

  12. T. Shimizu, T. Iikubo, and S. Isobe: Mater. Sci. Eng., A, 1992, vol. 153A, pp. 602–07.

    Google Scholar 

  13. A. Takasaki, K. Ojima, Y. Taneda, T. Hoshiya, and A. Mitsuhashi: J. Mater. Sci., 1993, vol. 28, pp. 1067–73.

    Article  ADS  CAS  Google Scholar 

  14. M. Schmitz-Niederau and M. Schutze: Oxid. Met., 1999, vol. 52, pp. 225–40.

    Article  CAS  Google Scholar 

  15. V.A.C. Haanappel, H. Clemens, and M.F. Stroosnijder: Intermetallics, 2002, vol. 10, pp. 293–305.

    Article  CAS  Google Scholar 

  16. K. Maki, M. Shioda, M. Sayashi, T. Shimizu, and S. Isobe: Mater. Sci. Eng., A, 1992, vol. 153, pp. 591–96.

    Article  Google Scholar 

  17. R.A. Perkins, K.T. Chiang, and G.H. Meier: Scripta Metall., 1987, vol. 21, pp. 1505–10.

    Article  CAS  Google Scholar 

  18. T.T. Cheng: Intermetallics, 1999, vol. 7, pp. 995–99.

    Article  CAS  Google Scholar 

  19. Z.W. Huang, W. Voice, and P. Bowen: Intermetallics, 2000, vol. 8, pp. 417–26.

    Article  CAS  Google Scholar 

  20. M.H. Loretto, A.B. Godfrey, D. Hu, P.A. Blenkinsop, I.P. Jones, and T.T. Cheng: Intermetallics, 1998, vol. 6 (7–8), pp. 663–66.

    Article  CAS  Google Scholar 

  21. P.K. Wright and A.H. Rosenberger: Mater. Sci. Eng. A, 2002, vols. 329–331, pp. 538–44.

    Google Scholar 

  22. R. Pather, W.A. Mitten, P. Holdway, H.S. Ubhi, A. Wisbey, and J.W. Brooks: Intermetallics, 2003, vol. 11, pp. 1015–27.

    Article  CAS  Google Scholar 

  23. A. Venskutonis and K. Riβbacher: Prepar. Fut., 2000, vol. 10, pp. 2–3.

    Google Scholar 

  24. M. Shazly, V. Prakash, and S. Draper: Int. J. Solids Struct., 2004, vol. 41, pp. 6485–6503.

    Article  Google Scholar 

  25. S.L. Draper, B.A. Lerch, I.E. Locci, M. Shazly, and V. Prakash: Intermetallics, 2005, vol. 13, pp. 1014–19.

    Article  CAS  Google Scholar 

  26. C. Ruiz and R.A.W. Mines: Int. J. Solids Struct., 1985, vol. 29, pp. 101–09.

    Google Scholar 

  27. C. Bacon, J. Farm, and J.L. Lataillade: Exper. Mech., 1994, vol. 34 (3), pp. 217–23.

    Article  Google Scholar 

  28. T. Yokoyama and K. Kishida: Exper. Mech., 1989, vol. 29 (2), pp. 188–94.

    Article  Google Scholar 

  29. G. Weisbrod and D. Rittel: Int. J. Fract., 2000, vol. 104, pp. 89–103.

    Article  Google Scholar 

  30. D. Rittel, A. Pineau, J. Clisson, and L. Rota: Exper. Mech., 2002, vol. 42, pp. 247–52.

    Article  Google Scholar 

  31. M. Irfan and V. Prakash: Proc. SEM: Special Edition Applied Mechanics, Society of Experimental Mechanics, Bethel, CT, 1998, pp. 201–08.

    Google Scholar 

  32. M.A. Irfan and V. Prakash: Int. J. Solids Struct., 2000, vol. 37, pp. 4477–4507.

    Article  MATH  Google Scholar 

  33. M.A. Irfan, N. Liou, and V. Prakash: Mater. Res. Soc. Symp. Proc: Layered Materials for Structural Applications, 1996, vol. 434, pp. 219–26.

    CAS  Google Scholar 

  34. C.H. Popelar, C.E. Anderson, and A. Nagy: Exper. Mech., 2000, vol. 40, pp. 401–07.

    Article  Google Scholar 

  35. C. Martins, M.A. Irfan, and V. Prakash: Mater. Sci. Eng., A, 2007, vol. 465, pp. 211–22.

    Article  Google Scholar 

  36. C.F. Martins and V. Prakash: in Modeling the Performance of Engineering Structural Materials III, T.S. Srivatsan, D.R. Lesuer, and E.M. Taleff, eds., TMS, Warrendale, PA, 2002, pp. 105–22.

    Google Scholar 

  37. F.C. Jiang and K.S. Vecchio: Rev. Sci. Instrum., 2007, vol. 78.

  38. V.M.F. Evora and A. Shukla: Mater. Sci. Eng., A, 2003, vol. 361, pp. 358–66.

    Article  Google Scholar 

  39. Standard Test Method for Crack Strength of Slow-Bend Pre-cracked Charpy Specimens of High Strength Metallic Materials – Section Three: Metals Test Methods and Analytical Procedures, American Society for Testing and Materials, Annual Book of Standards, ASTM International, West Conshohocken, PA, 2002, vol. 03.01, 677 pp.

  40. T. Nakamura, C.F. Shih, and L.B. Freund: Eng. Fract. Mech., 1986, vol. 25, pp. 323–39.

    Article  Google Scholar 

  41. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, FL, 2005.

    MATH  Google Scholar 

  42. J.F. Kalthoff, S. Winkler, and J. Beinert: Int. J. Fract., 1977, vol. 13, pp. 528–31.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the NASA advanced aeropropulsion research program through Grant No. NAG 3-2677. The authors thank Andreas Venskutonis (Plansee, Austria), for providing the Gamma-Met PX material used in the present study. The authors also acknowledge the financial support provided by the National Science Foundation through Grant Nos. CMS-9908189 and CMS-0079458, which was used for setting up the elevated-temperature test facility at Case Western Reserve University (Cleveland, OH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prakash.

Additional information

Manuscript submitted November 1, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shazly, M., Prakash, V. & Draper, S. Dynamic Fracture Initiation Toughness of a Gamma (Met-PX) Titanium Aluminide at Elevated Temperatures. Metall Mater Trans A 40, 1400–1412 (2009). https://doi.org/10.1007/s11661-009-9823-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9823-3

Keywords

Navigation