Skip to main content
Log in

Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual-phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP steels obtained from scanning electron microscopy (SEM) are used as representative volume elements (RVEs) in the finite element calculations. Ductile failure of the RVE is predicted as plastic strain localization during the deformation process. Systematic computations are conducted on the RVE to quantitatively evaluate the influence of the martensite mechanical properties and volume fraction on the macroscopic mechanical properties of DP steels. These properties include the ultimate tensile strength (UTS), ultimate ductility, and failure modes. The computational results show that, as the strength and volume fraction of the martensite phase increase, the UTS of DP steels increases, but the UTS strain and failure strain decrease. In addition, shear-dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths. The methodology and data presented in this article can be used to tailor DP steel design for its intended purposes and desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Shanmugam and K.R. Karthikeyan: Proc. Int. Conf. on Advanced High Strength Sheet Steels for Automotive Applications, Winter Park, CO, Association for Iron & Steel Technology, Warrendale, PA, 2004, pp. 171–78.

  2. M.S. Rashid: SAE Technical Paper 760206, Society of Automotive Engineers, Warrendale, PA, 1976.

  3. M.S. Rashid and E.R. Cprek: in ASTM Special Technical Publication, Vol. 647, B.A. Niemeier, A.K. Schmieder, and J.R. Newby, eds., ASTM, Philadelphia, PA, 1978, pp. 174–90.

    Google Scholar 

  4. N.J. Kim and A.H. Nakagawa: Mater. Sci. Eng., 1986, vol. 83, pp. 145–49.

    Article  CAS  Google Scholar 

  5. M. Erdogan: J. Mater. Sci., 2002, vol. 37, pp. 3623–30.

    Article  CAS  Google Scholar 

  6. M. Erdogan and R. Priestner: Mater. Sci. Technol., 2002, vol. 18, pp. 369–76.

    Article  CAS  Google Scholar 

  7. S. Sun and M. Pugh: Mater. Sci. Eng., A, 2002, vol. 335, pp. 298–308.

    Article  Google Scholar 

  8. K.S. Park, K.-T. Park, D.L. Lee, and C.S. Lee: Mater. Sci. Eng., A, 2007, vols. 449–451, pp. 1135–38.

    Google Scholar 

  9. M. Tayanç, A. Aytaç, and A. Bayram: Mater. Des., 2007, vol. 28, pp. 1827–35.

    Google Scholar 

  10. M. Sarwar, E. Ahmad, K.A. Qureshi, and T. Manzoor: Mater. Des., 2007, vol. 28, pp. 335–40.

    CAS  Google Scholar 

  11. M. Okayasu, K. Sato, M. Mizuno, D.Y. Hwang, and D.H. Shin: Int. J. Fatigue, 2008, vol. 30, pp. 1358–65.

    Article  CAS  Google Scholar 

  12. C. Kim: Metall. Trans. A, 1988, vol. 19A, pp. 1263–68.

    ADS  CAS  Google Scholar 

  13. S. Gündüz and A. Tosun: Mater. Des., 2008, vol. 29, pp. 1914–18.

    Google Scholar 

  14. H. Huh, S.-B. Kim, J.-H. Song, and J.-H. Lim: Int. J. Mech. Sci., 2008, vol. 50, pp. 918–31.

    Article  MATH  Google Scholar 

  15. J. Qu, W. Dabboussi, F. Hassani, J. Nemes, and S. Yue: Mater. Sci. Eng., A, 2008, vol. 479, pp. 93–104.

    Article  Google Scholar 

  16. W.C. Leslie and R.J. Sober: Trans. ASM, 1967, vol. 60, pp. 459–84.

    CAS  Google Scholar 

  17. G.R. Speich and R.L. Miller: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, New York, NY, 1979, pp.145–82.

    Google Scholar 

  18. M.J. Roberts and W.S. Owen: Special Report No. 93, The Iron and Steel Institute, London, 1965, pp. 171–78.

  19. J.M. Chilton and P.M. Kelly: Acta Metall., 1968, vol. 16, pp. 637–56.

    Article  CAS  Google Scholar 

  20. P.G. Winchell and M. Cohen: Trans ASM, 1962, vol. 55, pp. 347–61.

    CAS  Google Scholar 

  21. G.R. Speich and H. Warlimont: J. Iron Steel Inst., 1968, vol. 20, pp. 385–92.

    Google Scholar 

  22. H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1980, vol. 14, pp. 41–49.

    Article  CAS  Google Scholar 

  23. F.M. Beremin: Metall. Trans. A, 1981, vol. 12A, pp. 723–31.

    ADS  Google Scholar 

  24. A.M. Sarosiek and W.S. Owen: Scripta Metall., 1983, vol. 17, pp. 227–31.

    Article  Google Scholar 

  25. A.M. Sarosiek and W.S. Owen: Mater. Sci. Eng., 1984, vol. 66, pp. 13–34.

    Article  CAS  Google Scholar 

  26. J.G. Cowie, M. Azrin, and G.B. Olson: Metall. Trans. A, 1989, vol. 20A, pp. 143–53.

    CAS  Google Scholar 

  27. F. Marketz and F.D. Fischer: Comput. Mater. Sci., 1994, vol. 3, pp. 307–25.

    Article  CAS  Google Scholar 

  28. B. Verhaeghe, F. Louchet, Y. Bréchet, and J.P. Massoud: Acta Mater., 1997, vol. 45, pp. 1811–19.

    Article  CAS  Google Scholar 

  29. H. Sabar, M. Berveiller, V. Favier, and S. Berbenni: Int. J. Solids Struct., 2002, vol. 39, pp. 3257–76.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Berbenni, V. Favier, X. Lemoine, and M. Berveiller: Mater. Sci. Eng., A, 2004, vol. 372, pp. 128–36.

    Article  Google Scholar 

  31. D.D. Tjahjanto, S. Turteltaub, A.S. Suiker, and S. van der Zwaag: Modell. Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 617–36.

    Article  ADS  CAS  Google Scholar 

  32. C. McVeigh, F. Vernerey, W.K. Liu, B. Moran, and G. Olson: J. Mech. Phys. Solids, 2007, vol. 55, pp. 225–44.

    Article  ADS  CAS  Google Scholar 

  33. M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 2337–50.

    Article  Google Scholar 

  34. M. Grujicic, T. Erturk, and W.S. Owen: Mater. Sci. Eng., 1986, vol. 82, pp. 151–59.

    Article  CAS  Google Scholar 

  35. F.M. Al-Abbasi and J.A. Nemes: Int. J. Mech. Sci., 2003, vol. 45, pp. 1449–65.

    Article  MATH  Google Scholar 

  36. F.M. Al-Abbasi and J.A. Nemes: Comput. Mater. Sci., 2007, vol. 39, pp. 402–15.

    Article  CAS  Google Scholar 

  37. D.E. Ilie, B.P. O’Donnell, J.P. McGarry, and P.E. McHugh: J. Strain Anal. Eng. Des., 2007, vol. 42, pp. 237–52.

    Article  Google Scholar 

  38. V. Uthaisangsuk, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2008, vol. 43, pp. 27–35.

    Article  CAS  Google Scholar 

  39. S. Balasivanandha Prabu and L. Karunamoorthy: J. Mater. Process. Technol., 2008, vol. 207, pp. 53–62.

    Article  CAS  Google Scholar 

  40. F.A. McClintock: J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Google Scholar 

  41. Y. Wei and G. Xu: Int. J. Plasticity, 2005, vol. 21, pp. 2123–49.

    Article  MATH  CAS  Google Scholar 

  42. N. Bonora, A. Ruggiero, L. Esposito, and D. Gentile: Int. J. Plasticity, 2006, vol. 22, pp. 2015–47.

    Article  MATH  CAS  Google Scholar 

  43. P.J. Sánchez, A.E. Huespe, and J. Oliver: Int. J. Plasticity, 2008, vol. 24, pp. 1008–38.

    Article  MATH  Google Scholar 

  44. Y. Li and D. Karr: Int. J. Plasticity, 2008, DOI 10.1016/j.ijplas.2008.07.001.

  45. X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plasticity, 2008, DOI 10.1016/j.ijplas.2008.12.012.

  46. ABAQUS: Analysis User’s Manual, Version 6.7, Dassault Systèmes, Providence, RI, 2007.

  47. M. Tumuluru: Weld. J., 2007, vol. 86, pp. 161–69.

    Google Scholar 

Download references

Acknowledgments

The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy (DOE) under Contract No. DE-AC05-76RL01830. This work was funded by the DOE Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Dr. Joseph Carpenter. The assistance of Dr. Yan-Dong Wang, University of Tennessee, and Dr. Yang Ren, Argonne National Laboratory, with this work is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Choi.

Additional information

Manuscript submitted July 10, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K.S., Liu, W.N., Sun, X. et al. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels. Metall Mater Trans A 40, 796–809 (2009). https://doi.org/10.1007/s11661-009-9792-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9792-6

Keywords

Navigation